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This is an open-source python package for the extraction of Radiomics features from medical imaging. With this
package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained open-
source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community. The platform supports both the feature extraction in 2D and 3D.

If you publish any work which uses this package, please cite the following publication: Joost JM van Griethuy-
sen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina GH Beets-Tan, Jean-
Christophe Fillion-Robin, Steve Pieper, Hugo JWL Aerts, “Computational Radiomics System to Decode the Radio-
graphic Phenotype”; Submitted 2017

Note: This work was supported in part by the US National Cancer Institute grant 5U24CA194354, QUANTITATIVE
RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.
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Installation

Get the code

• Ensure you have the version control system git installed on your machine.

• Ensure that you have python installed on your machine, at least version 2.7 or 3.4.

• Clone the repository:

– git clone git://github.com/Radiomics/pyradiomics

Installation on your system

• For unix like systems (MacOSX, linux):

– cd pyradiomics

– sudo python -m pip install -r requirements.txt

– sudo python setup.py install

– If you don’t have sudo/admin rights on your machine, you need to locally install numpy, nose, tqdm,
PyWavelets, SimpleITK (specified in requirements.txt). In a bash shell:

pip install --user --upgrade pip
export PATH=$HOME/.local/bin:$PATH
pip install --user -r requirements.txt
export PYTHONPATH=$HOME/.local/lib64/python2.7/site-packages

* If the installation of SimpleITK fails (newer versions not available on the default servers), you can get
it manually from sourceforge

· For linux:

3

https://sourceforge.net/projects/simpleitk/files/SimpleITK/


pyradiomics Documentation, Release 1.1.1

wget 'https://sourceforge.net/projects/simpleitk/files/SimpleITK/0.10.
→˓0/Python/SimpleITK-0.10.0-1-cp27-cp27m-manylinux1_x86_64.whl'
pip install --user 'SimpleITK-0.10.0-1-cp27-cp27m-manylinux1_x86_64.whl
→˓'

· For Mac:

wget 'https://sourceforge.net/projects/simpleitk/files/SimpleITK/0.10.
→˓0/Python/SimpleITK-0.10.0-cp27-cp27m-macosx_10_6_intel.whl'
pip install --user 'SimpleITK-0.10.0-cp27-cp27m-macosx_10_6_intel.whl'

• For Windows:

– cd pyradiomics

– python -m pip install -r requirements.txt

– python setup.py install

– If the installation of SimpleITK fails (newer versions not available on the default servers), you can install
it manually:

pip install --trusted-host www.simpleitk.org -f https://sourceforge.net/
→˓projects/simpleitk/files/SimpleITK/0.10.0/Python/ SimpleITK==0.10.0

Usage

Instruction Video

Example

• PyRadiomics example code and data is available in the Github repository

• The sample sample data is provided in pyradiomics/data

• Use jupyter to run the helloRadiomics example, located in pyradiomics/bin/Notebooks

• Jupyter can also be used to run the example notebook as shown in the instruction video

– The example notebook can be found in pyradiomics/bin/Notebooks

– The parameter file used in the instruction video is available in pyradiomics/bin

• If jupyter is not installed, run the python script alternative (pyradiomics/bin/helloRadiomics.py):

– python helloRadiomics.py

Command Line Use

• PyRadiomics has 2 commandline scripts, pyradiomics is for single image feature extraction and
pyradiomicsbatch is for feature extraction from a batch of images and segmentations.

• Both scripts can be run directly from a command line window, anywhere in your system.

• To extract features from a single image and segmentation run:

pyradiomics <path/to/image> <path/to/segmentation>

4 Chapter 1. Table of Contents
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• To extract features from a batch run:

pyradiomicsbatch <path/to/input> <path/to/output>

• The input file for batch processing is a CSV file where each row represents one combination of an image
and a segmentation and contains 5 elements: 1) patient ID, 2) sequence name (image identifier), 3) reader
(segmentation identifier), 4) path/to/image, 5) path/to/mask.

• For more information on passing parameter files, setting up logging and controlling output format, run:

pyradiomics -h
pyradiomicsbatch -h

Interactive Use

• (LINUX) Add pyradiomics to the environment variable PYTHONPATH:

– setenv PYTHONPATH /path/to/pyradiomics/radiomics

• Start the python interactive session:

– python

• Import the necessary classes:

from radiomics import featureextractor
import six
import sys, os

• Set up a pyradiomics directory variable:

dataDir = '/path/to/pyradiomics'

• You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.

• Store the path of your image and mask in two variables:

imageName = os.path.join(dataDir, "data", 'brain1_image.nrrd')
maskName = os.path.join(dataDir, "data", 'brain1_label.nrrd')

• Also store the path to the file containing the extraction settings:

params = os.path.join(dataDir, "bin", "Params.yaml")

• Instantiate the feature extractor class with the parameter file:

extractor = featureextractor.RadiomicsFeaturesExtractor(params)

• Calculate the features:

result = extractor.execute(imageName, maskName)
for key, val in six.iteritems(result):
print("\t%s: %s" %(key, val))

• See the feature extractor class for more information on using this core class.

1.2. Usage 5
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PyRadiomics in 3D Slicer

A convenient front-end interface is provided as the ‘Radiomics’ extension for 3D Slicer. It is available here.

Using feature classes directly

• This represents an example where feature classes are used directly, circumventing checks and preprocessing
done by the radiomics feature extractor class, and is not intended as standard use example.

• (LINUX) Add pyradiomics to the environment variable PYTHONPATH:

– setenv PYTHONPATH /path/to/pyradiomics/radiomics

• Start the python interactive session:

– python

• Import the necessary classes:

from radiomics import firstorder, glcm, imageoperations, shape, glrlm, glszm
import SimpleITK as sitk
import six
import sys, os

• Set up a data directory variable:

dataDir = '/path/to/pyradiomics/data'

• You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.

• Use SimpleITK to read a the brain image and mask:

imageName = str(dataDir + os.path.sep + 'brain1_image.nrrd')
maskName = str(dataDir + os.path.sep + 'brain1_label.nrrd')
image = sitk.ReadImage(imageName)
mask = sitk.ReadImage(maskName)

• Calculate the first order features:

firstOrderFeatures = firstorder.RadiomicsFirstOrder(image,mask)
firstOrderFeatures.calculateFeatures()
for (key,val) in six.iteritems(firstOrderFeatures.featureValues):
print("\t%s: %s" % (key, val))

• See the Radiomic Features section for more features that you can calculate.

Pipeline Modules

This section contains the documentation on the various modules used to define the PyRadiomics pipeline and pre-
process the input data. Feature class modules, which contain the feature definitions are documented in the Radiomic
Features section.

Additionally, this section contains the documentation for the radiomics.generalinfo module, which provides the addi-
tional information about the extraction in the output. This additional information is added to enhance reproducibility
of the results.

6 Chapter 1. Table of Contents
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Finally, this section contains documentation for the global functions, which are used throughout the toolbox (such as
logging and the C extensions) and the radiomics.base module, which defines the common interface for the feature
classes.

Feature Extractor

class radiomics.featureextractor.RadiomicsFeaturesExtractor(*args, **kwargs)
Wrapper class for calculation of a radiomics signature. At and after initialisation various settings can be used
to customize the resultant signature. This includes which classes and features to use, as well as what should be
done in terms of preprocessing the image and what images (original and/or filtered) should be used as input.

Then a call to execute() generates the radiomics signature specified by these settings for the passed image
and labelmap combination. This function can be called repeatedly in a batch process to calculate the radiomics
signature for all image and labelmap combinations.

It initialisation, a parameters file can be provided containing all necessary settings. This is done by passing the
location of the file as the single argument in the initialization call, without specifying it as a keyword argument.
If such a file location is provided, any additional kwargs are ignored. Alternatively, at initialisation, the following
general settings can be specified in the parameter file or kwargs, with default values in brackets:

•enableCExtensions [True]: Boolean, set to False to force calculation to full-python mode. See also
enableCExtensions().

•additionalInfo [True]: boolean, set to False to disable inclusion of additional information on the extraction
in the output. See also addProvenance().

•binWidth [25]: Float, size of the bins when making a histogram and for discretization of the image gray
level.

•normalize [False]: Boolean, set to True to enable normalizing of the image before any resampling. See
also normalizeImage().

•normalizeScale [1]: Float, determines the scale after normalizing the image. If normalizing is disabled,
this has no effect.

•removeOutliers [None]: Float, defines the outliers to remove from the image. An outlier is defined as
values that differ more than 𝑛𝜎𝑥 from the mean, where 𝑛 > 0 and equal to the value of this setting. If this
parameter is omitted (providing it without a value (i.e. None) in the parameter file will throw an error), no
outliers are removed. If normalizing is disabled, this has no effect. See also normalizeImage().

•resampledPixelSpacing [None]: List of 3 floats, sets the size of the voxel in (x, y, z) plane when resampling.

•interpolator [sitkBSpline]: Simple ITK constant or string name thereof, sets interpolator to use for resam-
pling. Enumerated value, possible values:

–sitkNearestNeighbor (= 1)

–sitkLinear (= 2)

–sitkBSpline (= 3)

–sitkGaussian (= 4)

–sitkLabelGaussian (= 5)

–sitkHammingWindowedSinc (= 6)

–sitkCosineWindowedSinc (= 7)

–sitkWelchWindowedSinc (= 8)

–sitkLanczosWindowedSinc (= 9)

1.3. Pipeline Modules 7



pyradiomics Documentation, Release 1.1.1

–sitkBlackmanWindowedSinc (= 10)

•padDistance [5]: Integer, set the number of voxels pad cropped tumor volume with during resampling.
Padding occurs in new feature space and is done on all faces, i.e. size increases in x, y and z direction by
2*padDistance. Padding is needed for some filters (e.g. LoG). Value of padded voxels are set to original
gray level intensity, padding does not exceed original image boundaries. N.B. After application of filters
image is cropped again without padding.

•distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for
which angles should be generated. See also generateAngles()

•force2D [False]: Boolean, set to true to force a by slice texture calculation. Dimension that identifies
the ‘slice’ can be defined in force2Ddimension. If input ROI is already a 2D ROI, features are
automatically extracted in 2D. See also generateAngles()

•force2Ddimension [0]: int, range 0-2. Specifies the ‘slice’ dimension for a by-slice feature extraction.
Value 0 identifies the ‘z’ dimension (axial plane feature extraction), and features will be extracted from the
xy plane. Similarly, 1 identifies the y dimension (coronal plane) and 2 the x dimension (saggital plane). if
force2Dextraction is set to False, this parameter has no effect. See also generateAngles()

Note: Resampling is disabled when either resampledPixelSpacing or interpolator is set to None

In addition to these general settings, filter or feature class specific settings can be defined here also. For more
information on possible settings, see the respective filters and feature classes.

By default, all features in all feature classes are enabled. By default, only Original input image is enabled (No
filter applied).

addProvenance(provenance_on=True)
Enable or disable reporting of additional information on the extraction. This information includes toolbox
version, enabled input images and applied settings. Furthermore, additional information on the image and
region of interest (ROI) is also provided, including original image spacing, total number of voxels in the
ROI and total number of fully connected volumes in the ROI.

To disable this, call addProvenance(False).

loadParams(paramsFile)
Parse specified parameters file and use it to update settings in kwargs, enabled feature(Classes) and input
images:

•settings not specified in parameters are set to their default value.

•enabledFeatures are replaced by those in parameters. If no featureClass parameters were specified, all
featureClasses and features are enabled.

•inputImages are replaced by those in parameters. If no inputImage parameters were specified, only
original image is used for feature extraction, with no additional custom settings

The paramsFile is written according to the YAML-convention (www.yaml.org) and is checked by the code
for consistency. Only one yaml document per file is allowed. Settings must be grouped by setting type as
mentioned above are reflected in the structure of the document as follows:

<Setting Type>:
<Setting Name>: <value>
...

<Setting Type>:
...

8 Chapter 1. Table of Contents
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Blank lines may be inserted to increase readability, the are ignored by the parser. Additional comments
are also possible, these are preceded by an ‘#’ and can be inserted on a blank line, or on a line containing
settings:

# This is a line containing only comments
setting: # This is a comment placed after the declaration of the 'setting'
→˓group.

Any keyword, such as a setting type or setting name may only be mentioned once. Multiple instances do
not raise an error, but only the last encountered one is used.

The three setting types are named as follows:

•setting: Setting to use for preprocessing and class specific settings (kwargs arguments). if no
<value> is specified, the value for this setting is set to None.

•featureClass: Feature class to enable, <value> is list of strings representing enabled features. If no
<value> is specified or <value> is an empty list (‘[]’), all features for this class are enabled.

•inputImage: input image to calculate features on. <value> is custom kwarg settings (dictionary). if
<value> is an empty dictionary (‘{}’), no custom settings are added for this input image.

If supplied params file does not match the requirements, a pykwalify error is raised.

enableAllInputImages()
Enable all possible input images without any custom settings.

disableAllInputImages()
Disable all input images.

enableInputImageByName(inputImage, enabled=True, customArgs=None)
Enable or disable specified input image. If enabling input image, optional custom settings can be specified
in customArgs.

Current possible input images are:

•Original: No filter applied

•Wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying
either a High or a Low pass filter in each of the three dimensions. See also getWaveletImage()

•LoG: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change,
where sigma defines how coarse the emphasised texture should be. A low sigma emphasis on fine
textures (change over a short distance), where a high sigma value emphasises coarse textures (gray
level change over a large distance). See also getLoGImage()

•Square: Takes the square of the image intensities and linearly scales them back to the original range.
Negative values in the original image will be made negative again after application of filter.

•SquareRoot: Takes the square root of the absolute image intensities and scales them back to original
range. Negative values in the original image will be made negative again after application of filter.

•Logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
negative original values are made negative again after application of filter.

•Exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
scaled to original range and negative original values are made negative again after application of filter.

For the mathmetical formulas of square, squareroot, logarithm and exponential, see their
respective functions in imageoperations (getSquareImage(), getSquareRootImage(),
getLogarithmImage() and getExponentialImage(), respectively).

1.3. Pipeline Modules 9
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enableInputImages(**inputImages)
Enable input images, with optionally custom settings, which are applied to the respective input image.
Settings specified here override those in kwargs. The following settings are not customizable:

•interpolator

•resampledPixelSpacing

•padDistance

Updates current settings: If necessary, enables input image. Always overrides custom settings specified
for input images passed in inputImages. To disable input images, use enableInputImageByName()
or disableAllInputImages() instead.

Parameters inputImages – dictionary, key is imagetype (original, wavelet or log) and value
is custom settings (dictionary)

enableAllFeatures()
Enable all classes and all features.

disableAllFeatures()
Disable all classes.

enableFeatureClassByName(featureClass, enabled=True)
Enable or disable all features in given class.

enableFeaturesByName(**enabledFeatures)
Specify which features to enable. Key is feature class name, value is a list of enabled feature names.

To enable all features for a class, provide the class name with an empty list or None as value. Set-
tings for feature classes specified in enabledFeatures.keys are updated, settings for feature classes not yet
present in enabledFeatures.keys are added. To disable the entire class, use disableAllFeatures()
or enableFeatureClassByName() instead.

execute(imageFilepath, maskFilepath, label=None)
Compute radiomics signature for provide image and mask combination. First, image and mask are
loaded and normalized/resampled if necessary. Second, if enabled, provenance information is calcu-
lated and stored as part of the result. Next, shape features are calculated on a cropped (no padding)
version of the original image. Then other featureclasses are calculated using all specified input images in
inputImages. Images are cropped to tumor mask (no padding) after application of any filter and before
being passed to the feature class. Finally, the dictionary containing all calculated features is returned.

Parameters

• imageFilepath – SimpleITK Image, or string pointing to image file location

• maskFilepath – SimpleITK Image, or string pointing to labelmap file location

• label – Integer, value of the label for which to extract features. If not specified, last
specified label is used. Default label is 1.

Returns dictionary containing calculated signature (“<fil-
ter>_<featureClass>_<featureName>”:value).

loadImage(ImageFilePath, MaskFilePath)
Preprocess the image and labelmap. If ImageFilePath is a string, it is loaded as SimpleITK Image and
assigned to image, if it already is a SimpleITK Image, it is just assigned to image. All other cases are
ignored (nothing calculated). Equal approach is used for assignment of mask using MaskFilePath.

If normalizing is enabled image is first normalized before any resampling is applied.

If resampling is enabled, both image and mask are resampled and cropped to the tumor mask (with addi-
tional padding as specified in padDistance) after assignment of image and mask.

10 Chapter 1. Table of Contents
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getProvenance(imageFilepath, maskFilepath, mask)
Generates provenance information for reproducibility. Takes the original image & mask filepath, as well
as the resampled mask which is passed to the feature classes. Returns a dictionary with keynames coded
as “general_info_<item>”. For more information on generated items, see generalinfo

computeFeatures(image, mask, inputImageName, **kwargs)
Compute signature using image, mask, **kwargs settings.

This function computes the signature for just the passed image (original or derived), it does not preprocess
or apply a filter to the passed image. Features / Classes to use for calculation of signature are defined in
self.enabledFeatures. See also enableFeaturesByName().

Note: shape descriptors are independent of gray level and therefore calculated separately (handeled in
execute). In this function, no shape functions are calculated.

getFeatureClassNames()
Returns a list of all possible feature classes.

getFeatureNames(featureClassName)
Returns a list of all possible features in provided featureClass

Image Processing and Filters

radiomics.imageoperations.getBinEdges(binwidth, parameterValues)
Calculate and return the histogram using parameterValues (1D array of all segmented voxels in the image).
Parameter binWidth determines the fixed width of each bin. This ensures comparable voxels after binning, a
fixed bin count would be dependent on the intensity range in the segmentation.

Returns the bin edges, a list of the edges of the calculated bins, length is N(bins) + 1. Bins are defined such, that
the bin edges are equally spaced from zero, and that the leftmost edge ≤ min(𝑋𝑔𝑙).

Example: for a ROI with values ranging from 54 to 166, and a bin width of 25, the bin edges will be [50, 75,
100, 125, 150, 175].

This value can be directly passed to numpy.histogram to generate a histogram or numpy.digitize to
discretize the ROI gray values. See also binImage().

References

•Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-
PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(Au-
gust):11075.

radiomics.imageoperations.binImage(binwidth, parameterMatrix, parameterMatrixCoordi-
nates)

Discretizes the parameterMatrix (matrix representation of the gray levels in the ROI) using the binEdges cal-
culated using getBinEdges(). Only voxels defined by parameterMatrixCoordinates (defining the segmen-
tation) are used for calculation of histogram and subsequently discretized. Voxels outside segmentation are left
unchanged.

𝑋𝑏,𝑖 = ⌊𝑋𝑔𝑙,𝑖

𝑊 ⌋ − ⌊min(𝑋𝑔𝑙)
𝑊 ⌋ + 1

Here, 𝑋𝑔𝑙,𝑖 and 𝑋𝑏,𝑖 are gray level intensities before and after discretization, respectively. 𝑊 is the bin width
value (specfied in binWidth parameter). The first part of the formula ensures that the bins are equally spaced
from 0, whereas the second part ensures that the minimum gray level intensity inside the ROI after binning is
always 1.

1.3. Pipeline Modules 11
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If the range of gray level intensities is equally dividable by the binWidth, i.e. (max(𝑋𝑔𝑙) − min(𝑋𝑔𝑙))
mod 𝑊 = 0, the maximum intensity will be encoded as numBins + 1, therefore the maximum number of
gray level intensities in the ROI after binning is number of bins + 1.

N.B. This is different from the assignment of voxels to the bins by numpy.histogram , which has half-
open bins, with the exception of the rightmost bin, which means this maximum values are assigned to the
topmost bin. numpy.digitize uses half-open bins, including the rightmost bin.

radiomics.imageoperations.generateAngles(size, **kwargs)
Generate all possible angles from distance 1 until the maximum distance in distances in 3D. E.g. for d = 1,
13 angles are generated (representing the 26-connected region). For d = 2, 13 + 49 = 62 angles are generated
(representing the 26 connected region for distance 1, and the 98 connected region for distance 2)

First, only generated angles are retained, for which the maximum step size in any dimension (i.e. the infinity
norm distance from the center voxel) is present in distances. Next, impossible angles (where ‘neighbouring’
voxels will always be outside delineation) are deleted. Finally, if force2Dextraction is enabled, all angles
defining a step in the force2Ddimension are removed (e.g. if this dimension is 0, all angles that have a
non-zero step size at index 0 (z dimension) are removed, resulting in angles that only move in the x and/or y
dimension).

Parameters

• size – dimensions (z, x, y) of the bounding box of the tumor mask.

• kwargs – The following additional parameters can be specified here (default values in
brackets):

– distances [[1]]: List of integers. This specifies the distances between the center voxel and
the neighbor, for which angles should be generated.

– force2D [False]: Boolean, set to true to force a by slice texture calculation. Dimension
that identifies the ‘slice’ can be defined in force2Ddimension. If input ROI is already
a 2D ROI, features are automatically extracted in 2D.

– force2Ddimension [0]: int, range 0-2. Specifies the ‘slice’ dimension for a by-slice fea-
ture extraction. Value 0 identifies the ‘z’ dimension (axial plane feature extraction), and
features will be extracted from the xy plane. Similarly, 1 identifies the y dimension (coro-
nal plane) and 2 the x dimension (saggital plane). if force2Dextraction is set to
False, this parameter has no effect.

Returns numpy array with shape (N, 3), where N is the number of unique angles

radiomics.imageoperations.cropToTumorMask(imageNode, maskNode, label=1, bounding-
Box=None)

Create a sitkImage of the segmented region of the image based on the input label.

Create a sitkImage of the labelled region of the image, cropped to have a cuboid shape equal to the ijk boundaries
of the label.

Returns both the cropped version of the image and the cropped version of the labelmap, as well as the computed
bounding box. The bounding box is returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z, U_z), where ‘L’
and ‘U’ are lower and upper bound, respectively, and ‘x’, ‘y’ and ‘z’ the three image dimensions.

This can be used in subsequent calls to this function for the same images. This improves computation time, as
it will reduce the number of calls to SimpleITK.LabelStatisticsImageFilter().

Parameters

• label – [1], value of the label, onto which the image and mask must be cropped.

• boundingBox – [None], during a subsequent call, the boundingBox of a previous call can
be passed here, removing the need to recompute it. During a first call to this function for a
image/mask with a certain label, this value must be None or omitted.

12 Chapter 1. Table of Contents
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Returns Cropped image and mask (SimpleITK image instances) and the bounding box generated
by SimpleITK LabelStatisticsImageFilter.

radiomics.imageoperations.resampleImage(imageNode, maskNode, resampledPixelSpacing,
interpolator=3, label=1, padDistance=5)

Resamples image or label to the specified pixel spacing (The default interpolator is Bspline)

‘imageNode’ is a SimpleITK Object, and ‘resampledPixelSpacing’ is the output pixel spacing (list of 3 ele-
ments).

Only part of the image and labelmap are resampled. The resampling grid is aligned to the input origin, but
only voxels covering the area of the image defined by the bounding box and the padDistance are resampled.
This results in a resampled and partially cropped return image and labelmap. Additional padding is required as
some filters also sample voxels outside of segmentation boundaries. For feature calculation, image and mask are
cropped to the bounding box without any additional padding, as the feature classes do not need the gray level
values outside the segmentation.

radiomics.imageoperations.normalizeImage(image, scale=1, outliers=None)
Normalizes the image by centering it at the mean with standard deviation. Normalization is based on all gray
values in the image, not just those inside the segementation.

𝑓(𝑥) = 𝑠(𝑥−𝜇𝑥)
𝜎𝑥

Where:

•𝑥 and 𝑓(𝑥) are the original and normalized intensity, respectively.

•𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation of the image instensity values.

•𝑠 is an optional scaling defined by scale. By default, it is set to 1.

Optionally, outliers can be removed, in which case values for which 𝑥 > 𝜇𝑥 + 𝑛𝜎𝑥 or 𝑥 < 𝜇𝑥 − 𝑛𝜎𝑥 are set to
𝜇𝑥 + 𝑛𝜎𝑥 and 𝜇𝑥 − 𝑛𝜎𝑥, respectively. Here, 𝑛 > 0 and defined by outliers. This, in turn, is controlled by
the removeOutliers parameter. Removal of outliers is done after the values of the image are normalized,
but before scale is applied.

radiomics.imageoperations.applyThreshold(inputImage, lowerThreshold, upperThreshold, in-
sideValue=None, outsideValue=0)

radiomics.imageoperations.getOriginalImage(inputImage, **kwargs)
This function does not apply any filter, but returns the original image. This function is needed to dyanmically
expose the original image as a valid input image.

Returns Yields original image, ‘original’ and kwargs

radiomics.imageoperations.getLoGImage(inputImage, **kwargs)
Apply Laplacian of Gaussian filter to input image and compute signature for each filtered image.

Following settings are possible:

•sigma: List of floats or integers, must be greater than 0. Sigma values to use for the filter (determines
coarseness).

N.B. Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function will
return an empty dictionary.

Returned filter name reflects LoG settings: log-sigma-<sigmaValue>-3D.

Returns Yields log filtered image for each specified sigma, corresponding filter name and kwargs

radiomics.imageoperations.getWaveletImage(inputImage, **kwargs)
Apply wavelet filter to image and compute signature for each filtered image.

Following settings are possible:
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•start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions from
which a signature is calculated

•level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.

•wavelet [”coif1”]: string, type of wavelet decomposition. Enumerated value, validated against possible
values present in the pyWavelet.wavelist(). Current possible values (pywavelet version 0.4.0)
(where an aditional number is needed, range of values is indicated in []):

–haar

–dmey

–sym[2-20]

–db[1-20]

–coif[1-5]

–bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

–rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

Returned filter name reflects wavelet type: wavelet[level]-<decompositionName>

N.B. only levels greater than the first level are entered into the name.

Returns Yields each wavelet decomposition and final approximation, corresponding filter name and
kwargs

radiomics.imageoperations.getSquareImage(inputImage, **kwargs)
Computes the square of the image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) = (𝑐𝑥)2, where 𝑐 =
1√︀

max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields square filtered image, ‘square’ and kwargs

radiomics.imageoperations.getSquareRootImage(inputImage, **kwargs)
Computes the square root of the absolute value of image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) =

{︂ √
𝑐𝑥 for 𝑥 ≥ 0

−
√
−𝑐𝑥 for 𝑥 < 0

, where 𝑐 = max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields square root filtered image, ‘squareroot’ and kwargs

radiomics.imageoperations.getLogarithmImage(inputImage, **kwargs)
Computes the logarithm of the absolute value of the original image + 1.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) =

{︂
𝑐 log (𝑥 + 1) for 𝑥 ≥ 0
−𝑐 log (−𝑥 + 1) for 𝑥 < 0

, where 𝑐 =

{︃
max(𝑥)

log(max(𝑥)+1) 𝑖𝑓 max(𝑥) ≥ 0
max(𝑥)

− log(−max(𝑥)−1) 𝑖𝑓 max(𝑥) < 0

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.
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Returns Yields logarithm filtered image, ‘logarithm’ and kwargs

radiomics.imageoperations.getExponentialImage(inputImage, **kwargs)
Computes the exponential of the original image.

Resulting values are rescaled on the range of the initial original image.

𝑓(𝑥) = 𝑒𝑐𝑥, where 𝑐 =
log(max(𝑥))

max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields exponential filtered image, ‘exponential’ and kwargs

General Info Module

class radiomics.generalinfo.GeneralInfo(imagePath, maskPath, resampledMask, kwargs, in-
putImages)

execute()
Calculate and return a dictionary containing all general info items. Format is <info_item>:<value>, where
any ‘,’ in <value> are replaced by ‘;’ to prevent column alignment errors in csv formatted output.

getBoundingBoxValue()
Calculate and return the boundingbox extracted using the specified label. Elements 0, 1 and 2 are the x, y
and z coordinates of the lower bound, respectively. Elements 3, 4 and 5 are the size of the bounding box
in x, y and z direction, respectively.

Values are based on the resampledMask.

getGeneralSettingsValue()
Return a string representation of the settings contained in kwargs. Format is {<settings_name>:<value>,
...}.

getImageHashValue()
Returns the sha1 hash of the image. This enables checking whether two images are the same, regardless
of the file location.

If the reading of the image fails, an empty string is returned.

getImageSpacingValue()
Returns the original spacing of the image.

If the reading of the image fails, an empty string is returned.

getInputImagesValue()
Return a string representation of the enabled filters and any custom settings for the filter. Format is {<fil-
ter_name>:{<setting_name>:<value>, ...}, ...}.

getMaskHashValue()
Returns the sha1 hash of the mask. This enables checking whether two masks are the same, regardless of
the file location.

If the reading of the mask fails, an empty string is returned. Uses the original mask, specified in maskPath.

getVersionValue()
Return the current version of this package.

getVolumeNumValue()
Calculate and return the number of zones within the mask for the specified label. A zone is defined as
a group of connected neighbours that are segmented with the specified label, and a voxel is considered a
neighbour using 26-connectedness for 3D and 8-connectedness for 2D.
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Values are based on the resampledMask.

getVoxelNumValue()
Calculate and return the number of voxels that have been segmented using the specified label.

Values are based on the resampledMask.

Feature Class Base

class radiomics.base.RadiomicsFeaturesBase(inputImage, inputMask, **kwargs)
Bases: object

This is the abstract class, which defines the common interface for the feature classes. All feature classes inherit
(directly of indirectly) from this class.

At initialization, image and labelmap are passed as SimpleITK image objects (inputImage and inputMask,
respectively.) The motivation for using SimpleITK images as input is to keep the possibility of reusing the
optimized feature calculators implemented in SimpleITK in the future. If either the image or the mask is None,
initialization fails and a warning is logged (does not raise an error).

Logging is set up using a child logger from the parent ‘radiomics’ logger. This retains the toolbox structure in
the generated log.

The following variables are instantiated at initialization:

•binWidth: bin width, as specified in **kwargs. If key is not present, a default value of 25 is used.

•label: label value of Region of Interest (ROI) in labelmap. If key is not present, a default value of 1 is used.

•verbose: boolean indication whether or not to provide progress reporting to the output.

•featureNames: list containing the names of features defined in the feature class. See
getFeatureNames()

•inputImage: Simple ITK image object of the input image

•inputMask: Simple ITK image object of the input labelmap

•imageArray: numpy array of the gray values in the input image

•maskArray: numpy array with elements set to 1 where labelmap = label, 0 otherwise

•matrix: numpy array of the gray values in the input image (with gray values inside ROI discretized when
necessary in the texture feature classes).

•matrixCoordinates: tuple of 3 numpy arrays containing the z, x and y coordinates of the voxels included
in the ROI, respectively. Length of each array is equal to total number of voxels inside ROI.

•targetVoxelArray: flattened numpy array of gray values inside ROI.

enableFeatureByName(featureName, enable=True)
Enables or disables feature specified by featureName. If feature is not present in this class, a lookup
error is raised. enable specifies whether to enable or disable the feature.

enableAllFeatures()
Enables all features found in this class for calculation.

disableAllFeatures()
Disables all features. Additionally resets any calculated features.

classmethod getFeatureNames()
Dynamically enumerates features defined in the feature class. Features are identified by the
get<Feature>FeatureValue signature, where <Feature> is the name of the feature (unique on the
class level).
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Found features are returned as a list of the feature names ([<Feature1>, <Feature2>, ...]).

This function is called at initialization, found features are stored in the featureNames variable.

calculateFeatures()
Calculates all features enabled in enabledFeatures. A feature is enabled if it’s key is present in this
dictionary and it’s value is True.

Calculated values are stored in the featureValues dictionary, with feature name as key and the calcu-
lated feature value as value. If an exception is thrown during calculation, the error is logged, and the value
is set to NaN.

Global Toolbox Functions

radiomics.cMatsEnabled()
Returns a boolean indicating whether or not the C extensions are enabled. This function is called by the feature
classes to switch between C-enhanced calculation and full python mode.

radiomics.debug(debug_on=True)
Control level of logger and stderr output of the toolbox. By default, this output reflects module hierar-
chy, as child loggers are created by module. This is achieved by the following line in base.py: self.
logger = logging.getLogger(self.__module__). To use same instance in each module, set
self.logger=logging.getLogger('radiomics').

At command line, turn on debugging output to stderr for all pyradiomics functions with:

import radiomics

radiomics.debug()

This set the level of both the logger and the handler for output to stderr to level = DEBUG. If level of logger is
already at level “DEBUG” or “NOTSET”, level of logger is not changed.

Turn off debugging with (only changes the level of the handler for output to stderr):

radiomics.debug(False)

By default, the radiomics logger is set to level “INFO” and the stderr handler to level “WARNING”. Therefore a
log storing the extraction log messages from level “INFO” and up can be easily set up by adding an appropriate
handler to the radiomics logger.

radiomics.enableCExtensions(enabled=True)
By default, calculation of GLCM, GLRLM and GLSZM is done in C, using extension _cmatrices.py

If an error occurs during loading of this extension, a warning is logged and the extension is disabled,
matrices are then calculated in python. The C extension can be disabled by calling this function as
enableCExtensions(False), which forces the calculation of the matrices to full-python mode.

Re-enabling use of C implementation is also done by this function, but if the extension is not loaded correctly,
a warning is logged and matrix calculation is forced to full-python mode.

radiomics.getFeatureClasses()
Iterates over all modules of the radiomics package using pkgutil and subsequently imports those modules.

Return a dictionary of all modules containing featureClasses, with modulename as key, abstract class object of
the featureClass as value. Assumes only one featureClass per module

This is achieved by inspect.getmembers. Modules are added if it contains a member that is a class, with name
starting with ‘Radiomics’ and is inherited from radiomics.base.RadiomicsFeaturesBase.

This iteration only runs once (at initialization of toolbox), subsequent calls return the dictionary created by the
first call.
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radiomics.getInputImageTypes()
Returns a list of possible input image types. This function finds the image types dynamically by matching the
signature (“get<inputImage>Image”) against functions defined in imageoperations. Returns a list containing
available input image names (<inputImage> part of the corresponding function name).

This iteration only occurs once, at initialization of the toolbox. Found results are stored and returned on subse-
quent calls.

radiomics.setVerbosity(level)
Assumes the handler added to the radiomics logger at initialization of the toolbox is not removed from the logger
handlers.

Using the level (Python defined logging levels) argument, determine how much PyRadiomics should print
out to the stderr, the following levels are possible:

•60: Quiet mode, no messages are printed to the stderr

•50: Only log messages of level “CRITICAL” are printed

•40: Log messages of level “ERROR” and up are printed

•30: Log messages of level “WARNING” and up are printed

•20: Log messages of level “INFO” and up are printed

•10: Log messages of level “DEBUG” and up are printed (i.e. all log messages)

N.B. This does not affect the level of the logger itself (e.g. if verbosity level = 3, log messages with DEBUG
level can still be stored in a log file if an appropriate handler is added to the logger and the logging level
of the logger has been set to the correct level

Radiomic Features

This section contains the definitions of the various features that can be extracted using PyRadiomics. They are subdi-
vided into the following classes:

• First Order Features (19 features)

• Shape Features (13 features)

• Gray Level Co-occurrence Matrix (GLCM) Features (28 features)

• Gray Level Size Zone Matrix (GLSZM) Features (16 features)

• Gray Level Run Length Matrix (GLRLM) Features (16 features)

All feature classes, with the exception of shape can be calculated on either the original image and/or a derived image,
obtained by applying one of several filters. The shape descriptors are independent of gray value, and are extracted
from the label mask. If enabled, they are calculated separately of enabled input image types, and listed in the result as
if calculated on the original image.

First Order Features

class radiomics.firstorder.RadiomicsFirstOrder(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

First-order statistics describe the distribution of voxel intensities within the image region defined by the mask
through commonly used and basic metrics.

Let:
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X denote the three dimensional image matrix with 𝑁 voxels

P(𝑖) the first order histogram with 𝑁𝑙 discrete intensity levels, where 𝑁𝑙 is defined by the number of levels,
calculated based on the binWidth parameter.

𝑝(𝑖) be the normalized first order histogram and equal to P(𝑖)∑︀
P(𝑖)

Following additional settings are possible:

•voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total
Energy and RMS, this is to prevent negative values. __If using CT data, or data normalized with mean 0,
consider setting this parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the image.
Bear in mind however, that the larger the value, the larger the volume confounding effect will be.__

getEnergyFeatureValue()
Calculate the Energy of the image array.

𝑒𝑛𝑒𝑟𝑔𝑦 =

𝑁∑︁
𝑖=1

(X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to Energy, instead of
voxels with gray level intensity closest to 0.

Energy is a measure of the magnitude of voxel values in an image. A larger values implies a greater sum
of the squares of these values. This feature is volume-confounded, a larger value of 𝑐 increases the effect
of volume-confounding.

getTotalEnergyFeatureValue()
Calculate the Total Energy of the image array.

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑉𝑣𝑜𝑥𝑒𝑙

𝑁∑︁
𝑖=1

(X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to Energy, instead of
voxels with gray level intensity closest to 0.

Total Energy is the value of Energy feature scaled by the volume of the voxel in cubic mm. This feature is
volume-confounded, a larger value of 𝑐 increases the effect of volume-confounding.

getEntropyFeatureValue()
Calculate the Entropy of the image array.

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁𝑙∑︁
𝑖=1

𝑝(𝑖) log2

(︀
𝑝(𝑖) + 𝜖

)︀
Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of
information required to encode the image values.

getMinimumFeatureValue()
Calculate the Minimum Value in the image array.

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(X)

get10PercentileFeatureValue()
Calculate the 10th percentile in the image array.

get90PercentileFeatureValue()
Calculate the 90th percentile in the image array.
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getMaximumFeatureValue()
Calculate the Maximum Value in the image array.

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max(X)

getMeanFeatureValue()
Calculate the Mean Value for the image array.

𝑚𝑒𝑎𝑛 = 1
𝑁

𝑁∑︁
𝑖=1

X(𝑖)

getMedianFeatureValue()
Calculate the Median Value for the image array.

getInterquartileRangeFeatureValue()
Calculate the interquartile range of the image array.

𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 = P75 − P25, where P25 and P75 are the 25th and 75th percentile of the image array,
respectively.

getRangeFeatureValue()
Calculate the Range of Values in the image array.

𝑟𝑎𝑛𝑔𝑒 = max(X) − min(X)

getMeanAbsoluteDeviationFeatureValue()
Calculate the Mean Absolute Deviation for the image array.

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1
𝑁

𝑁∑︁
𝑖=1

|X(𝑖) − 𝑋̄|

Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value of the image
array.

getRobustMeanAbsoluteDeviationFeatureValue()
Calculate the Robust Mean Absolute Deviation for the image array.

𝑟𝑜𝑏𝑢𝑠𝑡 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1
𝑁10−90

𝑁10−90∑︁
𝑖=1

|X10−90(𝑖) − 𝑋̄10−90|

Robust Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value calcu-
lated on the subset of image array with gray levels in between, or equal to the 10th and 90th percentile.

getRootMeanSquaredFeatureValue()
Calculate the Root Mean Squared of the image array.

𝑅𝑀𝑆 =
√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to RMS, instead of
voxels with gray level intensity closest to 0.

RMS is the square-root of the mean of all the squared intensity values. It is another measure of the
magnitude of the image values. This feature is volume-confounded, a larger value of 𝑐 increases the effect
of volume-confounding.

getStandardDeviationFeatureValue()
Calculate the Standard Deviation of the image array.

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − 𝑋̄)2

Standard Deviation measures the amount of variation or dispersion from the Mean Value.
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getSkewnessFeatureValue(axis=0)
Calculate the Skewness of the image array.

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝜇3

𝜎3
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − 𝑋̄)3(︂√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − 𝑋̄)2

)︂3

Where 𝜇3 is the 3rd central moment.

Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on
where the tail is elongated and the mass of the distribution is concentrated, this value can be positive or
negative.

Related links:

https://en.wikipedia.org/wiki/Skewness

getKurtosisFeatureValue(axis=0)
Calculate the Kurtosis of the image array.

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝜇4

𝜎4
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − 𝑋̄)4(︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − 𝑋̄)2

)︁2

Where 𝜇4 is the 4th central moment.

Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image ROI. A higher kurtosis
implies that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean.
A lower kurtosis implies the reverse: that the mass of the distribution is concentrated towards a spike near
the Mean value.

Related links:

https://en.wikipedia.org/wiki/Kurtosis

getVarianceFeatureValue()
Calculate the Variance in the image array.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 = 1
𝑁

𝑁∑︁
𝑖=1

(X(𝑖) − 𝑋̄)2

Variance is the the mean of the squared distances of each intensity value from the Mean value. This is a
measure of the spread of the distribution about the mean.

getUniformityFeatureValue()
Calculate the Uniformity of the image array.

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =

𝑁𝑙∑︁
𝑖=1

𝑝(𝑖)2

Uniformity is a measure of the sum of the squares of each intensity value. This is a measure of the
heterogeneity of the image array, where a greater uniformity implies a greater heterogeneity or a greater
range of discrete intensity values.

Shape Features

class radiomics.shape.RadiomicsShape(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase
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In this group of features we included descriptors of the three-dimensional size and shape of the tumor region.
Let in the following definitions denote 𝑉 the volume (mm3) and 𝐴 the surface area of the volume (mm2) of
interest.

getVolumeFeatureValue()
Calculate the volume of the tumor region in cubic millimeters.

getSurfaceAreaFeatureValue()
Calculate the surface area of the tumor region in square millimeters using a marching cubes algorithm.

𝐴 =

𝑁∑︁
𝑖=1

1

2
|a𝑖b𝑖 × a𝑖c𝑖|

Where:

𝑁 is the number of triangles forming the surface mesh of the volume (ROI)

a𝑖b𝑖 and a𝑖c𝑖 are the edges of the 𝑖th triangle formed by points a𝑖, b𝑖 and c𝑖

getSurfaceVolumeRatioFeatureValue()
Calculate the surface area to volume ratio of the tumor region

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝐴
𝑉

Here, a lower value indicates a more compact (sphere-like) shape.

getSphericityFeatureValue()
Calculate the Sphericity of the tumor region.

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
3√
36𝜋𝑉 2

𝐴

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It is a
dimensionless measure, independent of scale and orientation. The value range is 0 < 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 ≤ 1,
where a value of 1 indicates a perfect sphere (a sphere has the smallest possible surface area for a given
volume, compared to other solids).

Note: This feature is correlated to Compactness 1, Compactness 2 and Spherical Disproportion. In the
default parameter file provided in the pyradiomics\bin folder, Compactness 1 and Compactness 2
are therefore disabled.

getCompactness1FeatureValue()
Calculate the compactness (1) of the tumor region.

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 = 𝑉√
𝜋𝐴3

Similar to Sphericity, Compactness 1 is a measure of how compact the shape of the tumor is relative to
a sphere (most compact). It is therefore correlated to Sphericity and redundant. It is provided here for
completeness. The value range is 0 < 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 ≤ 1

6𝜋 , where a value of 1
6𝜋 indicates a perfect

sphere.

By definition, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 = 1
6𝜋

√
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 1

6𝜋

√︀
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦3.

Note: This feature is correlated to Compactness 2, Sphericity and Spherical Disproportion. In the de-
fault parameter file provided in the pyradiomics\bin folder, Compactness 1 and Compactness 2 are
therefore disabled.

getCompactness2FeatureValue()
Calculate the Compactness (2) of the tumor region.
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𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 36𝜋 𝑉 2

𝐴3

Similar to Sphericity and Compactness 1, Compactness 2 is a measure of how compact the shape of the
tumor is relative to a sphere (most compact). It is a dimensionless measure, independent of scale and
orientation. The value range is 0 < 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 ≤ 1, where a value of 1 indicates a perfect sphere.

By definition, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = (𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦)3

Note: This feature is correlated to Compactness 1, Sphericity and Spherical Disproportion. In the de-
fault parameter file provided in the pyradiomics\bin folder, Compactness 1 and Compactness 2 are
therefore disabled.

getSphericalDisproportionFeatureValue()
Calculate the Spherical Disproportion of the tumor region.

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝐴
4𝜋𝑅2 = 𝐴

3√
36𝜋𝑉 2

Where 𝑅 is the radius of a sphere with the same volume as the tumor, and equal to 3

√︁
3𝑉
4𝜋 .

Spherical Disproportion is the ratio of the surface area of the tumor region to the surface area of a sphere
with the same volume as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value
range is 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ≥ 1, with a value of 1 indicating a perfect sphere.

Note: This feature is correlated to Compactness 1, Sphericity and Spherical Disproportion. In the de-
fault parameter file provided in the pyradiomics\bin folder, Compactness 1 and Compactness 2 are
therefore disabled.

getMaximum3DDiameterFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels. Also known as Feret
Diameter.

getMaximum2DDiameterSliceFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the row-column plane.

getMaximum2DDiameterColumnFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the row-slice plane.

getMaximum2DDiameterRowFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the column-slice plane.

getElongationFeatureValue()
Calculate the elongation of the shape, which is defined as:

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝜆longest

𝜆intermediate

Here, 𝜆longest and 𝜆intermediate are the lengths of the largest and second largest principal component axes.

References:

•Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu Z, et al. Statistical analysis of 3D images
detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.
PLoS Comput Biol. 2010;6:27.

getFlatnessFeatureValue()
Calculate the flatness of the shape, which is defined as:

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
𝜆intermediate

𝜆shortest
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Here, 𝜆intermediate and 𝜆shortest are the lengths of the second largest and smallest principal component axes.

References:

•Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu Z, et al. Statistical analysis of 3D images
detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.
PLoS Comput Biol. 2010;6:27.

Gray Level Co-occurrence Matrix (GLCM) Features

class radiomics.glcm.RadiomicsGLCM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Co-occurrence Matrix (GLCM) of size 𝑁𝑔 × 𝑁𝑔 describes the second-order joint probability
function of an image region constrained by the mask and is defined as P(𝑖, 𝑗|𝛿, 𝛼). The (𝑖, 𝑗)th element of this
matrix represents the number of times the combination of levels 𝑖 and 𝑗 occur in two pixels in the image, that
are separated by a distance of 𝛿 pixels in direction 𝛼, and 𝑁𝑔 is the number of discrete gray level intensities.
The distance 𝛿 from the center voxel is defined as the distance according to the infinity norm. For 𝛿 = 1, this
assumes 26-connectivity in 3D and for 𝛿 = 2 a 98-connectivity.

Note that pyradiomics by default computes symmetrical GLCM!

As a two dimensional example, let the following matrix I represent a 5x5 image, having 5 discrete grey levels:

I =

⎡⎢⎢⎢⎢⎣
1 2 5 2 3
3 2 1 3 1
1 3 5 5 2
1 1 1 1 2
1 2 4 3 5

⎤⎥⎥⎥⎥⎦
For distance 𝛿 = 1 (considering pixels with a distance of 1 pixel from each other) in directions 𝛼 = 0∘ and
opposite 𝛼 = 180∘ (i.e., to the left and right from the pixel with the given value), the following symmetrical
GLCM is obtained:

P =

⎡⎢⎢⎢⎢⎣
6 4 3 0 0
4 0 2 1 3
3 2 0 1 2
0 1 1 0 0
0 3 2 0 2

⎤⎥⎥⎥⎥⎦
Let:

𝜖 be an arbitrarily small positive number (≈ 2.2 × 10−16)

P(𝑖, 𝑗) be the co-occurence matrix for an arbitrary 𝛿 and 𝛼

𝑝(𝑖, 𝑗) be the normalized co-occurence matrix and equal to P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

𝑁𝑔 be the number of discrete intensity levels in the image

𝑝𝑥(𝑖) =
∑︀𝑁𝑔

𝑗=1 𝑃 (𝑖, 𝑗) be the marginal row probabilities

𝑝𝑦(𝑗) =
∑︀𝑁𝑔

𝑖=1 𝑃 (𝑖, 𝑗) be the marginal column probabilities

𝜇𝑥 be the mean gray level intensity of 𝑝𝑥 and defined as 𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

𝜇𝑦 be the mean gray level intensity of 𝑝𝑦 and defined as 𝜇𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗
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𝜎𝑥 be the standard deviation of 𝑝𝑥

𝜎𝑦 be the standard deviation of 𝑝𝑦

𝑝𝑥+𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where 𝑖 + 𝑗 = 𝑘, and 𝑘 = 2, 3, . . . , 2𝑁𝑔

𝑝𝑥−𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where |𝑖− 𝑗| = 𝑘, and 𝑘 = 0, 1, . . . , 𝑁𝑔 − 1

𝐻𝑋 = −
∑︀𝑁𝑔

𝑖=1 𝑝𝑥(𝑖) log2

(︀
𝑝𝑥(𝑖) + 𝜖

)︀
be the entropy of 𝑝𝑥

𝐻𝑌 = −
∑︀𝑁𝑔

𝑗=1 𝑝𝑦(𝑗) log2

(︀
𝑝𝑦(𝑗) + 𝜖

)︀
be the entropy of 𝑝𝑦

𝐻𝑋𝑌 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
be the entropy of 𝑝(𝑖, 𝑗)

𝐻𝑋𝑌 1 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀
𝐻𝑋𝑌 2 = −

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀
By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of
these values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W
and then summed and normalised. Features are then calculated on the resultant matrix. Weighting factor W is
calculated for the distance between neighbouring voxels by:

𝑊 = 𝑒−‖𝑑‖2

, where d is the distance for the associated angle according to the norm specified in setting ‘weight-
ingNorm’.

The following class specific settings are possible:

•symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two direc-
tions per angle, which results in a symmetrical matrix, with equal distributions for 𝑖 and 𝑗. A symmetrical
matrix corresponds to the GLCM as defined by Haralick et al.

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:

–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and option ‘no_weighting’ is used.

References

•Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification; IEEE Transactions on
Systems, Man and Cybernetics; 1973(3), p610-621

•https://en.wikipedia.org/wiki/Co-occurrence_matrix

•http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm

getAutocorrelationFeatureValue()
Calculate and return the mean Autocorrelation.

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖𝑗

Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.
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getAverageIntensityFeatureValue()
Return the mean gray level intensity of the 𝑖 distribution.

𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

Warning: As this formula represents the average of the distribution of 𝑖, it is independent from
the distribution of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where 𝑝𝑥(𝑖) =
𝑝𝑦(𝑗), where 𝑖 = 𝑗.

getClusterProminenceFeatureValue()
Using coefficients 𝜇𝑥 and 𝜇𝑦 , calculate and return the mean Cluster Prominence.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀4
𝑝(𝑖, 𝑗)

Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies
more asymmetry about the mean while a lower value indicates a peak near the mean value and less variation
about the mean.

getClusterShadeFeatureValue()
Using coefficients 𝜇𝑥 and 𝜇𝑦 , calculate and return the mean Cluster Shade.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀3
𝑝(𝑖, 𝑗)

Cluster Shade is a measure of the skewness and uniformity of the GLCM. A higher cluster shade implies
greater asymmetry about the mean.

getClusterTendencyFeatureValue()
Using coefficients 𝜇𝑥 and 𝜇𝑦 , calculate and return the mean Cluster Tendency.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀2
𝑝(𝑖, 𝑗)

Cluster Tendency is a measure of groupings of voxels with similar gray-level values.

getContrastFeatureValue()
Using the squared difference between gray values of neighbouring paris, calculate and return the mean
Contrast.

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝑗)2𝑝(𝑖, 𝑗)

Contrast is a measure of the local intensity variation, favoring 𝑃 (𝑖, 𝑗) values away from the diagonal
(𝑖 = 𝑗). A larger value correlates with a greater disparity in intensity values among neighboring voxels.

getCorrelationFeatureValue()
Using coefficients 𝜇𝑥, 𝜇𝑦 , 𝜎𝑥 and 𝜎𝑦 , calculate and return the mean Correlation.

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔
𝑗=1 𝑝(𝑖,𝑗)𝑖𝑗−𝜇𝑥(𝑖)𝜇𝑦(𝑗)

𝜎𝑥(𝑖)𝜎𝑦(𝑗)

Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear dependency
of gray level values to their respective voxels in the GLCM.
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getDifferenceAverageFeatureValue()
Using coefficient 𝑝𝑥−𝑦 , calculate and return the mean Difference Average.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑁𝑔−1∑︁
𝑘=0

𝑘𝑝𝑥−𝑦(𝑘)

Difference Average measures the relationship between occurrences of pairs with similar intensity values
and occurrences of pairs with differing intensity values.

getDifferenceEntropyFeatureValue()
Using coefficient 𝑝𝑥−𝑦 , calculate and return the mean Difference Entropy.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑁𝑔−1∑︁
𝑘=0

𝑝𝑥−𝑦(𝑘) log2

(︀
𝑝𝑥−𝑦(𝑘) + 𝜖

)︀
Difference Entropy is a measure of the randomness/variability in neighborhood intensity value differences.

getDifferenceVarianceFeatureValue()
Using coefficients 𝑝𝑥−𝑦 and DifferenceAverage (DA) calculate and return the mean Difference Variance.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝑁𝑔−1∑︁
𝑘=0

(1 −𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

Difference Variance is a measure of heterogeneity that places higher weights on differing intensity level
pairs that deviate more from the mean.

getDissimilarityFeatureValue()
Calculate and return the mean Dissimilarity.

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

|𝑖− 𝑗|𝑝(𝑖, 𝑗)

Dissimilarity is a measure of local intensity variation defined as the mean absolute difference between the
neighbouring pairs. A larger value correlates with a greater disparity in intensity values among neighboring
voxels.

getEnergyFeatureValue()
Calculate and return the mean Energy.

𝑒𝑛𝑒𝑟𝑔𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑝(𝑖, 𝑗)

)︀2
Energy (or Angular Second Moment)is a measure of homogeneous patterns in the image. A greater Energy
implies that there are more instances of intensity value pairs in the image that neighbor each other at higher
frequencies.

getEntropyFeatureValue()
Calculate and return the mean Entropy.

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
Entropy is a measure of the randomness/variability in neighborhood intensity values.

getHomogeneity1FeatureValue()
Calculate and return the mean Homogeneity 1.

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 1 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|
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Homogeneity 1 is a measure of the similarity in intensity values for neighboring voxels. It is a measure of
local homogeneity that increases with less contrast in the window.

getHomogeneity2FeatureValue()
Calculate and return the mean Homogeneity 2.

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 2 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

Homogeneity 2 is a measure of the similarity in intensity values for neighboring voxels.

getImc1FeatureValue()
Using coefficients 𝐻𝑋 , 𝐻𝑌 , 𝐻𝑋𝑌 and 𝐻𝑋𝑌 1, calculate and return the mean Informal Measure of
Correlation 1.

𝐼𝑀𝐶 1 = 𝐻𝑋𝑌−𝐻𝑋𝑌 1
max{𝐻𝑋,𝐻𝑌 }

getImc2FeatureValue()
Using coefficients 𝐻𝑋𝑌 and 𝐻𝑋𝑌 2, calculate and return the mean Informal Measure of Correlation 2.

𝐼𝑀𝐶 2 =
√

1 − 𝑒−2(𝐻𝑋𝑌 2−𝐻𝑋𝑌 )

getIdmFeatureValue()
Calculate and return the mean Inverse Difference Moment.

𝐼𝐷𝑀 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

IDM (inverse difference moment) is a measure of the local homogeneity of an image. IDM weights are
the inverse of the Contrast weights (decreasing exponentially from the diagonal i=j in the GLCM).

getIdmnFeatureValue()
Calculate and return the mean Inverse Difference Moment Normalized.

𝐼𝐷𝑀𝑁 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|2
𝑁2

𝑔

)︁
IDMN (inverse difference moment normalized) is a measure of the local homogeneity of an image. IDMN
weights are the inverse of the Contrast weights (decreasing exponentially from the diagonal 𝑖 = 𝑗 in
the GLCM). Unlike Homogeneity2, IDMN normalizes the square of the difference between neighboring
intensity values by dividing over the square of the total number of discrete intensity values.

getIdFeatureValue()
Calculate and return the mean Inverse Difference.

𝐼𝐷 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|

ID (inverse difference) is another measure of the local homogeneity of an image. With more uniform gray
levels, the denominator will remain low, resulting in a higher overall value.

getIdnFeatureValue()
Calculate and return the mean Inverse Difference Normalized.

𝐼𝐷𝑁 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|
𝑁𝑔

)︁
IDN (inverse difference normalized) is another measure of the local homogeneity of an image. Unlike
Homogeneity1, IDN normalizes the difference between the neighboring intensity values by dividing over
the total number of discrete intensity values.
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getInverseVarianceFeatureValue()
Calculate and return the mean Inverse Variance.

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

|𝑖− 𝑗|2
, 𝑖 ̸= 𝑗

getMaximumProbabilityFeatureValue()
Calculate and return the mean Maximum Probability.

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max
(︀
𝑝(𝑖, 𝑗)

)︀
Maximum Probability is occurrences of the most predominant pair of neighboring intensity values.

getSumAverageFeatureValue()
Coefficient 𝑝𝑥+𝑦 , calculate and return the mean Sum Average.

𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘)𝑘

Sum Average measures the relationship between occurrences of pairs with lower intensity values and
occurrences of pairs with higher intensity values.

getSumEntropyFeatureValue()
Using coefficient 𝑝𝑥+𝑦 , calculate and return the mean Sum Entropy.

𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘) log2

(︀
𝑝𝑥+𝑦(𝑘) + 𝜖

)︀
Sum Entropy is a sum of neighborhood intensity value differences.

getSumVarianceFeatureValue()
Using coefficients 𝑝𝑥+𝑦 and SumEntropy (SE) calculate and return the mean Sum Variance.

𝑠𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

2𝑁𝑔∑︁
𝑘=2

(𝑘 − 𝑆𝐸)2𝑝𝑥+𝑦(𝑘)

Sum Variance is a measure of heterogeneity that places higher weights on neighboring intensity level pairs
that deviate more from the mean.

getSumVariance2FeatureValue()
Using coefficients 𝑝𝑥+𝑦 and SumAvarage (SA) calculate and return the mean Sum Variance 2.

𝑠𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 2 =

2𝑁𝑔∑︁
𝑘=2

(𝑘 − 𝑆𝐴)2𝑝𝑥+𝑦(𝑘)

Sum Variance 2 is a measure of heterogeneity that places higher weights on neighboring intensity level
pairs that deviate more from the mean.

This formula differs from SumVariance in that instead of subtracting the SumEntropy from the intensity,
it subtracts the SumAvarage, which is the mean of intensities and not its entropy

getSumSquaresFeatureValue()
Using coefficients 𝑖 and 𝜇𝑥, calculate and return the mean Sum of Squares (also known as Variance) of the
𝑖 distribution.

𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝜇𝑥)2𝑝(𝑖, 𝑗)

Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs about the
mean intensity level in the GLCM.
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Warning: This formula represents the variance of the distribution of 𝑖 and is independent from
the distribution of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where 𝑝𝑥(𝑖) =
𝑝𝑦(𝑗), where 𝑖 = 𝑗

Gray Level Size Zone Matrix (GLSZM) Features

class radiomics.glszm.RadiomicsGLSZM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as
a the number of connected voxels that share the same gray level intensity. A voxel is considered connected
if the distance is 1 according to the infinity norm. This yields a 26-connected region in a 3D image, and an
8-connected region in a 2D image. In a gray level size zone matrix 𝑃 (𝑖, 𝑗) the (𝑖, 𝑗)th element describes the
number of times a gray level zone with gray level 𝑖 and size 𝑗 appears in image.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLSZM then becomes:

P =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

P(𝑖, 𝑗) be the size zone matrix

𝑝(𝑖, 𝑗) be the normalized size zone matrix, defined as 𝑝(𝑖, 𝑗) = P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

𝑁𝑔 be the number of discreet intensity values in the image

𝑁𝑠 be the number of discreet zone sizes in the image

𝑁𝑝 be the number of voxels in the image

References

•Guillaume Thibault; Bernard Fertil; Claire Navarro; Sandrine Pereira; Pierre Cau; Nicolas Levy; Jean
Sequeira; Jean-Luc Mari (2009). “Texture Indexes and Gray Level Size Zone Matrix. Application to Cell
Nuclei Classification”. Pattern Recognition and Information Processing (PRIP): 140-145.

•https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix

getSmallAreaEmphasisFeatureValue()
Calculate and return the Small Area Emphasis (SAE) value.

𝑆𝐴𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

A measure of the distribution of small size zones, with a greater value indicative of more smaller size zones
and more fine textures.
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getLargeAreaEmphasisFeatureValue()
Calculate and return the Large Area Emphasis (LAE) value.

𝐿𝐴𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

A measure of the distribution of large area size zones, with a greater value indicative of more larger size
zones and more coarse textures.

getGrayLevelNonUniformityFeatureValue()
Calculate and return the Gray Level Non-Uniformity (GLN) value.

𝐺𝐿𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑠

𝑗=1 P(𝑖,𝑗))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the variability of gray-level intensity values in the image, with a lower value indicating more
homogeneity in intensity values.

getGrayLevelNonUniformityNormalizedFeatureValue()
Calculate and return the Gray Level Non-Uniformity Normalized (GLNN) value.

𝐺𝐿𝑁𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑠

𝑗=1 P(𝑖,𝑗))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑑
𝑗=1 P(𝑖,𝑗)2

Measures the variability of gray-level intensity values in the image, with a lower value indicating a greater
similarity in intensity values. This is the normalized version of the GLN formula.

getSizeZoneNonUniformityFeatureValue()
Calculate and return the Size-Zone Non-Uniformity (SZN) value.

𝑆𝑍𝑁 =

∑︀𝑁𝑠
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the variability of size zone volumes in the image, with a lower value indicating more homogene-
ity in size zone volumes.

getSizeZoneNonUniformityNormalizedFeatureValue()
Calculate and return the Size-Zone Non-Uniformity Normalized (SZNN) value.

𝑆𝑍𝑁𝑁 =

∑︀𝑁𝑠
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑑
𝑗=1 P(𝑖,𝑗)2

Measures the variability of size zone volumes throughout the image, with a lower value indicating more
homogeneity among zone size volumes in the image. This is the normalized version of the SZN formula.

getZonePercentageFeatureValue()
Calculate and return the Zone Percentage (ZP) value.

𝑍𝑃 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)
𝑁𝑝

Measures the coarseness of the texture by taking the ratio of number of zones and number of voxels in the
ROI. Values are in range 1

𝑁𝑝
≤ 𝑍𝑃 ≤ 1, with higher values indicating a larger portion of the ROI consists

of small zones (indicates a more fine texture).

getGrayLevelVarianceFeatureValue()
Calculate and return the Gray Level Variance (GLV) value.

𝐺𝐿𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑖− 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖
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Measures the variance in gray level intensities for the zones.

getZoneVarianceFeatureValue()
Calculate and return the Zone Variance (ZV) value.

𝑍𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗

Measures the variance in zone size volumes for the zones.

getZoneEntropyFeatureValue()
Calculate and return the Zone Entropy (ZE) value.

𝑍𝐸 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

Measures the uncertainty/randomness in the distribution of zone sizes and gray levels. A higher value
indicates more heterogeneneity in the texture patterns.

getLowGrayLevelZoneEmphasisFeatureValue()
Calculate and return the Low Gray Level Zone Emphasis (LGLZE) value.

𝐿𝐺𝐿𝑍𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the distribution of lower gray-level size zones, with a higher value indicating a greater proportion
of lower gray-level values and size zones in the image.

getHighGrayLevelZoneEmphasisFeatureValue()
Calculate and return the High Gray Level Zone Emphasis (HGLZE) value.

𝐻𝐺𝐿𝑍𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion
of higher gray-level values and size zones in the image.

getSmallAreaLowGrayLevelEmphasisFeatureValue()
Calculate and return the Small Area Low Gray Level Emphasis (SALGLE) value.

𝑆𝐴𝐿𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of smaller size zones with lower gray-level
values.

getSmallAreaHighGrayLevelEmphasisFeatureValue()
Calculate and return the Small Area High Gray Level Emphasis (SAHGLE) value.

𝑆𝐴𝐻𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)𝑖2

𝑗2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of smaller size zones with higher gray-level
values.

getLargeAreaLowGrayLevelEmphasisFeatureValue()
Calculate and return the Large Area Low Gray Level Emphasis (LALGLE) value.

32 Chapter 1. Table of Contents



pyradiomics Documentation, Release 1.1.1

𝐿𝐴𝐿𝐺𝐿𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)𝑗2

𝑖2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of larger size zones with lower gray-level
values.

getLargeAreaHighGrayLevelEmphasisFeatureValue()
Calculate and return the Large Area High Gray Level Emphasis (LAHGLE) value.

𝐿𝐴𝐻𝐺𝐿𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of larger size zones with higher gray-level
values.

Gray Level Run Length Matrix (GLRLM) Features

class radiomics.glrlm.RadiomicsGLRLM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs in an image. A gray level run is defined
as the length in number of pixels, of consecutive pixels that have the same gray level value. In a gray level run
length matrix P(𝑖, 𝑗|𝜃), the (𝑖, 𝑗)th element describes the number of times a gray level 𝑖 appears consecutively 𝑗
times in the direction specified by 𝜃.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLRLM for 𝜃 = 0, where 0 degrees is the horizontal direction, then becomes:

P =

⎡⎢⎢⎢⎢⎣
1 0 1 0 0
3 0 1 0 0
4 1 1 0 0
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

P(𝑖, 𝑗|𝜃) be the run length matrix for an arbitrary direction 𝜃

𝑝(𝑖, 𝑗|𝜃) be the normalized run length matrix, defined as 𝑝(𝑖, 𝑗|𝜃) = P(𝑖,𝑗|𝜃)∑︀
P(𝑖,𝑗|𝜃)

𝑁𝑔 be the number of discreet intensity values in the image

𝑁𝑟 be the number of discreet run lengths in the image

𝑁𝑝 be the number of voxels in the image

By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean
of these values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between
neighbouring voxels and then summed and normalised. Features are then calculated on the resultant matrix. The
distance between neighbouring voxels is calculated for each angle using the norm specified in ‘weightingNorm’.

The following class specific settings are possible:

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:
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–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and option ‘no_weighting’ is used.

References

•Galloway MM. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Pro-
cessing, 4(2):172-179.

•Chu A., Sehgal C.M., Greenleaf J. F. 1990. Use of gray value distribution of run length for texture analysis.
Pattern Recognition Letters, 11(6):415-419

•Xu D., Kurani A., Furst J., Raicu D. 2004. Run-Length Encoding For Volumetric Texture. International
Conference on Visualization, Imaging and Image Processing (VIIP), p. 452-458

•Tang X. 1998. Texture information in run-length matrices. IEEE Transactions on Image Processing
7(11):1602-1609.

•Tustison N., Gee J. Run-Length Matrices For Texture Analysis. Insight Journal 2008 January - June.

getShortRunEmphasisFeatureValue()
Calculate and return the mean Short Run Emphasis (SRE) value for all GLRLMs.

𝑆𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

A measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths
and more fine textural textures.

getLongRunEmphasisFeatureValue()
Calculate and return the mean Long Run Emphasis (LRE) value for all GLRLMs.

𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

A measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and
more coarse structural textures.

getGrayLevelNonUniformityFeatureValue()
Calculate and return the mean Gray Level Non-Uniformity (GLN) value for all GLRLMs.

𝐺𝐿𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑟

𝑗=1 P(𝑖,𝑗|𝜃))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the similarity of gray-level intensity values in the image, where a lower GLN value correlates
with a greater similarity in intensity values.

getGrayLevelNonUniformityNormalizedFeatureValue()
Calculate and return the Gray Level Non-Uniformity Normalized (GLNN) value.

𝐺𝐿𝑁𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑟

𝑗=1 P(𝑖,𝑗|𝜃))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)2

Measures the similarity of gray-level intensity values in the image, where a lower GLNN value correlates
with a greater similarity in intensity values. This is the normalized version of the GLN formula.

getRunLengthNonUniformityFeatureValue()
Calculate and return the mean Run Length Non-Uniformity (RLN) value for all GLRLMs.
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𝑅𝐿𝑁 =

∑︀𝑁𝑟
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗|𝜃)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the similarity of run lengths throughout the image, with a lower value indicating more homo-
geneity among run lengths in the image.

getRunLengthNonUniformityNormalizedFeatureValue()
Calculate and return the mean Run Length Non-Uniformity Normalized (RLNN) value for all GLRLMs.

𝑅𝐿𝑁𝑁 =

∑︀𝑁𝑟
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗|𝜃)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the similarity of run lengths throughout the image, with a lower value indicating more homo-
geneity among run lengths in the image. This is the normalized version of the RLN formula.

getRunPercentageFeatureValue()
Calculate and return the mean Run Percentage (RP) value for all GLRLMs.

𝑅𝑃 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

P(𝑖, 𝑗|𝜃)

𝑁𝑝

Measures the coarseness of the texture by taking the ratio of number of runs and number of voxels in the
ROI. Values are in range 1

𝑁𝑝
≤ 𝑅𝑃 ≤ 1, with higher values indicating a larger portion of the ROI consists

of short runs (indicates a more fine texture).

getGrayLevelVarianceFeatureValue()
Calculate and return the Gray Level Variance (GLV) value.

𝐺𝐿𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑖− 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑖

Measures the variance in gray level intensity for the runs.

getRunVarianceFeatureValue()
Calculate and return the Run Variance (RV) value.

𝑅𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑗

Measures the variance in runs for the run lengths.

getRunEntropyFeatureValue()
Calculate and return the Run Entropy (RE) value.

𝑅𝐸 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃) log2(𝑝(𝑖, 𝑗|𝜃) + 𝜖)

Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

getLowGrayLevelRunEmphasisFeatureValue()
Calculate and return the mean Low Gray Level Run Emphasis (LGLRE) value for all GLRLMs.
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𝐿𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the distribution of low gray-level values, with a higher value indicating a greater concentration
of low gray-level values in the image.

getHighGrayLevelRunEmphasisFeatureValue()
Calculate and return the mean High Gray Level Run Emphasis (HGLRE) value for all GLRLMs.

𝐻𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the distribution of the higher gray-level values, with a higher value indicating a greater concen-
tration of high gray-level values in the image.

getShortRunLowGrayLevelEmphasisFeatureValue()
Calculate and return the mean Short Run Low Gray Level Emphasis (SRLGLE) value for all GLRLMs.

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of shorter run lengths with lower gray-level values.

getShortRunHighGrayLevelEmphasisFeatureValue()
Calculate and return the mean Short Run High Gray Level Emphasis (SRHGLE) value for all GLRLMs.

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)𝑖2

𝑗2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of shorter run lengths with higher gray-level values.

getLongRunLowGrayLevelEmphasisFeatureValue()
Calculate and return the mean Long Run Low Gray Level Emphasis (LRLGLE) value for all GLRLMs.

𝐿𝑅𝐿𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)𝑗2

𝑖2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of long run lengths with lower gray-level values.

getLongRunHighGrayLevelEmphasisFeatureValue()
Calculate and return the mean Long Run High Gray Level Emphasis (LRHGLE) value for all GLRLMs.

𝐿𝑅𝐻𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of long run lengths with higher gray-level values.

Developers

This section contains information on how to add or customize the feature classes and filters available in PyRa-
diomics. PyRadiomics enumerates the available feature classes and input image types at initialization of the toolbox.
These are available from the global radiomics namespace by use of the functions getFeatureClasses() and
getInputImageTypes(), respectively. Individual features in a feature class are enumerated at initialization of
the class. See also the contributing guidelines

Signature of a feature class

Each feature class is defined in a separate module, the module name is used as the feature class name (e.g. if module
tex.py matches the feature class signature, it is available in the PyRadiomics toolbox as the ‘tex’ feature class). In the
module a class should be defined that fits the following signature:
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[required imports]
from radiomics import base

class Radiomics[Name](base.RadiomicsFeaturesBase):
"""
Feature class docstring
"""

def __init__(self, inputImage, inputMask, **kwargs):
super(RadiomicsGLCM, self).__init__(inputImage, inputMask, **kwargs)

def get[Feature]FeatureValue(self):
"""
Feature docstring
"""

return [value]

• At the top should be the import statements for packages required by the feature class. Unused import statements
should be removed (flake8 will fail if unused import statements are encountered, or import statements are not
structured as defined by appnexus).

• The class name should be ‘Radiomics’ followed by the name of the class (usually similar to the module name.
However, this name is not used elsewhere and may be named arbitrarily).

• The class should inherit (directly or indirectly) from base.RadiomicsFeaturesBase, which is an abstract
class defining the common interface for the feature classes

• Additional initialization steps should be called in the __init__ function. For default variables initialized, see
Feature Class Base.

• Documentation is required! Both at the class level (Feature class docstring) and at the level of the individual
features (Feature docstring).

• If the feature class uses C extensions for matrix calculation enhancement, which should be tested using
test_cmatrices, matrix calculation should be implemented as follows:

– The function calculating the matrix in python should be defined in a function called
_calculateMatrix.

– The function calculating the matrix using the C extension should be defined in a function called
_calculateCMatrix.

– The functions to calculate the matrix accept no additional input arguments other than the self argument,
and return the fully processed matrix as a numpy array.

– The fully processed matrix should be assigned to a variable in the feature class named P_[Name], where
[Name] is identical to the feature class name (module name) (e.g. in feature class glcm, matrix is stored
in variable P_glcm

Signature of individual features

Each individual feature is defined as a function in the feature class with the get[Name]FeatureValue(self)
signature, where [Name] is the feature name (unique on the feature class level). It accepts no input arguments, and
should return a scalar value. The self argument represents the instantiated feature class that defines the function,
and identifies the feature function as non-static.
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Signature of a filter

All filters are defined in the imageoperations module, and identified by the signature
get[Name]Image(inputImage, **kwargs). Here, [Name] represents the unique name for the im-
age type, which is also used to identify the filter during extraction. The input of a filter is fixed and consists of the
inputImage, a SimpleITK Image object of the original image and **kwargs, which are the customized setting
that should be used for the extraction of features from the derived image.

One or more derived images are returned using the ‘yield’ statement: yield derivedImage,
inputImageName, kwargs. Here, derivedImage is one SimpleITK image object representing the filtered
imag e, inputImageName is a unique string identifying features calculated using this filter in the output and
kwargs are the customized settings for the extraction (**kwargs passed as input, without the double asterisk).
Multiple derived images can be returned by multiple yield statements, or yield statements inside a loop. Please note
that only one derived image should be returned on each call to yield and that inputImageName is a unique name
for each returned derived image. Derived images must have the same dimensions and occupy the same physical space
to ensure compatibility with the mask.

Addtional points for attention

Code style

To keep the PyRadiomics code consistent and as readable as possible, some style rules are enforced. These are part
of the continuous testing and implemented using flake8. See also the .flake8 configuration file in the root of the
repository. To aid in keeping a consistent code style, a .editorconfig file is provided in the root of the folder.

Module names should be lowercase, without underscores or spaces. Class names, function names and variables should
be declared using camelcase, with uppercase first letter for class names and lowercase first letter otherwise. Private
helper functions (which should not be included in the documentation) should be declared using a ‘_’ prefix. This is
consistent with the python style for marking them as ‘private’, and will automatically exclude them from the generated
documentation.

Documentation

The documentation of PyRadiomics is auto-generated from static files contained in the docs folder and the docstrings
of the Python code files. When a new feature class is added, this has to be added to the static file (features.rst)
describing the feature classes as well. If done so, sphinx will take care of the rest. A featureclass can be added as
follows:

<Class Name> Features
---------------------

.. automodule:: radiomics.<module name>
:members:
:undoc-members:
:show-inheritance:
:member-order: bysource

Documentation providing information of the feature class as a whole (e.g. how the feature matrix is calculated) should
be provided in the docstring of the class. Definition of individual features, including the mathematical formulas should
be provided in the docstrings of the feature functions. A docstring of the module is not required.

The presence of a docstring at the class level and at the level of each individual feature is required and checked during
testing. Missing docstrings will cause the test to fail.
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Testing

To ensure consistency in the extraction provided by PyRadiomics, continuous testing is used to test the PyRadiomics
source code after each commit. These tests are defined in the test folder and used to run tests for the following
environments:

• Python 2.7 32 and 64 bits (Windows, Linux and Mac)

• Python 3.4 32 and 64 bits (Windows and Linux)

• Python 3.5 32 and 64 bits (Windows and Linux)

Note: Python 3 testing for mac is currently disabled for Mac due to some issues with the SimpleITK package for
python 3.

There are 3 testing scripts run for PyRadiomics. The first test is test_cmatrices, which asserts if the matrices
calculated by the C extensions match those calculated by Python. A threshold of 1e-3 is used to allow for machine
precision errors. The second test is test_docstrings, which asserts if there is missing documentation as de-
scribed above. The final and most important test is test_features, which compares the features calculated by
PyRadiomics against a known baseline using 5 test cases. These test cases and the baseline are stored in the data
folder of the repository. This ensures that changes to the code do not silently change the calculated values of the
features.

To add a new feature class to the baseline, run the addClassToBaseline.py script, contained in the bin folder.
This script detects if there are feature classes in PyRadiomics, for which there is no baseline available. If any are
found, a new baseline if calculated for these classes in the full-python mode and added to the baseline files. These new
baseline files then needed to be included in the repository and committed.

Frequently Asked Questions

Installation

During setup, python is unable to compile the C extensions.

This can occur when no compiler is available for python. If you’re installing on Windows, you can find free compilers
for python here.

Which python versions is PyRadiomics compatible with?

PyRadiomics is compatible with both python 2 and python 3. The automated testing uses python versions 2.7, 3.4 and
3.5 (both 32 and 64 bits). Python < 2.6 is not supported. Other python versions may be compatible with PyRadiomics,
but this is not actively tested and therefore not guaranteed to work.

Input / Customization

I want to customize my extraction. How do I do that?

See also the Usage section. PyRadiomics can be customized in various ways, but it’s most easy to do this by providing
a parameter file. In this yaml structured text file you can define your custom settings and which features and input
image types to enable. Possible general settings, as well as possible image types are documented here, with additional
feature class specific settings documented at the start of the feature class.

What file types are supported by PyRadiomics for input image and mask?
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PyRadiomics uses SimpleITK for image loading and handling. Therefore, all image types supported by SimpleITK
can be used as input for PyRadiomics. Please note that only one file location can be provided for image/mask. If you
want to provide the image in DICOM format, load the DICOM images using SimpleITK functionality and pass the
resultant image object instead.

What modalities does PyRadiomics support?

PyRadiomics is not developed for one specific modality. Multiple modalities can be processed by PyRadiomics,
although the optimal settings may differ between modalities. There are some constraints on the input however:

1. Gray scale volume: PyRadiomics currently does not provide extraction from color images or images with com-
plex values

2. 3D or slice: Although PyRadiomics supports single slice (2D) feature extraction, the input is still required to
have 3 dimensions (where in case of 2D, a dimension may be of size 1).

Can I use DICOM-RT struct for the input mask?

PyRadiomics does not support DICOM-RT struct as input directly. We recommend to convert these using for example
SlicerRT. We are working on providing support for DICOM-RT in the Slicer extension, but this is not thoroughly
tested yet.

Usage

How should the input file for pyradiomicsbatch be structured?

Currently, the input file for pyradiomicsbatch is a csv file specifying the combinations of images and masks
for which to extract features. It does not contain a header line, and each line represents one such combination.
Each line has 5 elements: Patient, Image, Mask, Image location, Mask location. Only the last two elements are
‘active’ (used during extraction), the are the locations of the image and mask files on the computer. The first three
elements are copied to the output and are there to enable easy clustering of the results or correlation to outcome.
These three elements are chosen, because patients can have multiple scans (or multiple sequences, e.g. in MRI),
and each image can be segmented by different readers. As they are not actively used by PyRadiomics, any value
is valid, including empty values, as long as they are provided (e.g. ”„,<path/to/image>,<path/to/mask>” is valid,
“<path/to/image>,<path/to/mask>” is not).

I installed PyRadiomics, but when I run the jupyter notebook, I get ImportError: No module named
radiomics

This can have two possible causes: 1) When installing PyRadiomics from the repository, your python path variable will
be updated to enable python to find the package. However, this value is only updated in commandline windows when
they are restarted. If your jupyter notebook was running during installation, you first need to restart it. 2) Multiple
versions of python can be installed on your machine simultaneously. Ensure PyRadiomics is installed on the same
version you are using in your Jupyter notebook.

When I try to extract features, I get an error stating that image and mask do not occupy the same space.

During extraction, SimpleITK checks whether the mask matches the image dimensions and physical
space and raises an error when this is not the case. This is to prevent attempts to extract fea-
tures from an image using a mask that does not match the image. If it is the correct mask,
you can change the tolerance for differences in direction and origin between the image and mask by
setting SimpleITK.ProcessObject.SetGlobalDefaultDirectionTolerance and SimpleITK.
ProcessObject.SetGlobalDefaultDirectionTolerance, respectively. By default, these are set to 1e-6
mm. Alternatively, you can resample your mask with SimpleITK.ResampleImageFilter(), using the image as a refer-
ence image and Nearest Neighbour as interpolator. See the SimpleITK documentation for more information.

I’m missing features from my output. How can I see what went wrong?

If calculation of features or application of filters fails, a warning is logged. If you want to know exactly what happens
inside the toolbox, PyRadiomics provides extensive debug logging. You can enable this to be printed to the out, or
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stored in a separate log file. The output is regulated by radiomics.setVerbosity() and the PyRadiomics
logger can be accessed via radiomics.logger. See the examples included in the repository on how to set up
logging.

I’m able to extract features, but many are NaN, 0 or 1. What happend?

It is possible that the segmentation was too small to extract a valid texture. Check the value of VoxelNum, which
is part of the additional information in the output. This is the number of voxels in the ROI after pre processing and
therefore the number of voxels that are used for feature calculation.

Another problem can be that you have to many or too few gray values after discretization. You can check this by
comparing the range of gray values in the ROI (a First Order feature) with the value for your binWidth parameter.
More bins capture smaller differences in gray values, but too many bins (compared to number of voxels) will yield low
probabilities in the texture matrices, resulting in non-informative features. There is no definitive answer for the ideal
number of discretized gray values, and this may differ between modalities. One study1 assessed the number of bins in
PET and found that in the range of 16 - 128 bins, texture features did not differ significantly.

Does PyRadiomics support voxel-wise feature extraction (for the generation of colormaps)?

No, currently PyRadiomics only supports lesion-based feature extraction. However, voxel-based feature extraction
may be a good addition in the future. If you have thoughts or ideas on how to implement this, we’d welcome your
input on the pyradiomics email list.

Miscellaneous

A new version of PyRadiomics is available! Where can I find out what changed?

When a new version is released, a changelog is included in the release statement. Between releases, changes are not
explicitly documented, but all significant changes are implemented using pull requests. Check the merged pull request
for the latest changes.

I have some ideas for PyRadiomics. How can I contribute?

We welcome suggestions and contributions to PyRadiomics. Check our guidelines to see how you can contribute to
PyRadiomics. Signatures and code styles used in PyRadiomics are documented in the Developers section.

I found a bug! Where do I report it?

We strive to keep PyRadiomics as bug free as possible by thoroughly testing new additions before including them in
the stable version. However, nothing is perfect, and some bugs may therefore exist. Report yours by opening an issue
on the GitHub or contact us at the pyradiomics email list. If you want to help in fixing it, we’d welcome you to open
up a pull request with your suggested fix.

My question is not listed here...

If you have a question that is not listed here, check the pyradiomics email list or the issues on GitHub. Feel free to
post a new question or issue and we’ll try to get back to you ASAP.

1 Tixier F, Cheze-Le Rest C, Hatt M, Albarghach NM, Pradier O, Metges J-P, et al. Intratumor Heterogeneity Characterized by Textural Features
on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011;52:369–78.
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CHAPTER 2

Feature Classes

Currently supports the following feature classes:

• First Order Statistics

• Shape-based

• Gray Level Cooccurence Matrix (GLCM)

• Gray Level Run Length Matrix (GLRLM)

• Gray Level Size Zone Matrix (GLSZM)

On average, Pyradiomics extracts ≈ 1300 features per image, which consist of the 13 shape descriptors and features
extracted from original and derived images (LoG with 5 sigma levels, 1 level of Wavelet decomposistions yielding 8
derived images and images derived using Square, Square Root, Logarithm and Exponential filters).

Detailed description on feature classes and individual features is provided in section Radiomic Features.
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CHAPTER 3

Filter Classes

Aside from the feature classes, there are also some built-in optional filters:

• Laplacian of Gaussian (LoG, based on SimpleITK functionality)

• Wavelet (using the PyWavelets package)

• Square

• Square Root

• Logarithm

• Exponential

For more information, see also Image Processing and Filters.
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CHAPTER 4

Supporting reproducible extraction

Aside from calculating features, the pyradiomics package includes additional information in the output. This infor-
mation contains information on used image and mask, as well as applied settings and filters, thereby enabling fully
reproducible feature extraction. For more information, see General Info Module.
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CHAPTER 5

3rd-party packages used in pyradiomics

• SimpleITK (Image loading and preprocessing)

• numpy (Feature calculation)

• PyWavelets (Wavelet filter)

• pykwalify (Enabling yaml parameters file checking)

• tqdm (Progressbar)

• six (Python 3 Compatibility)

• sphinx (Generating documentation)

• sphinx_rtd_theme (Template for documentation)

• nose-parameterized (Testing)

See also the requirements file.
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CHAPTER 6

Installation

PyRadiomics is OS independent and compatible with both Python 2.7 and Python >=3.4.

• Clone the repository

– git clone git://github.com/Radiomics/pyradiomics

• Install on your system (Linux, Mac OSX), with prerequisites:

– cd pyradiomics

– sudo python -m pip install -r requirements.txt

– sudo python setup.py install

• For more detailed installation instructions and installation on Windows see Installation Details
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CHAPTER 7

Pyradiomics Indices and Tables

• modindex

• genindex

• search
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CHAPTER 8

License

This package is covered by the open source 3D Slicer License.
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CHAPTER 9

Developers

• Joost van Griethuysen1,3,4

• Andriy Fedorov2

• Nicole Aucoin2

• Jean-Christophe Fillion-Robin5

• Ahmed Hosny1

• Steve Pieper6

• Hugo Aerts (PI)1,2

1Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, 2Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA 3Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 4GROW-School for On-
cology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, 5Kitware,
6Isomics
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CHAPTER 10

Contact

We are happy to help you with any questions. Please contact us on the pyradiomics email list.

We’d welcome your contributions to PyRadiomics. Please read the contributing guidelines on how to contribute to
PyRadiomics. Information on adding / customizing feature classes and filters can be found in the Developers section.
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Python Module Index

b
radiomics.base, 16

f
radiomics.featureextractor, 7
radiomics.firstorder, 18

g
radiomics.generalinfo, 15
radiomics.glcm, 24
radiomics.glrlm, 33
radiomics.glszm, 30

i
radiomics.imageoperations, 11

r
radiomics, 17

s
radiomics.shape, 21
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Index

A
addProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 8
applyThreshold() (in module ra-

diomics.imageoperations), 13

B
binImage() (in module radiomics.imageoperations), 11

C
calculateFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
17

cMatsEnabled() (in module radiomics), 17
computeFeatures() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 11
cropToTumorMask() (in module ra-

diomics.imageoperations), 12

D
debug() (in module radiomics), 17
disableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
16

disableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

disableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 9

E
enableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
16

enableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

enableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 9

enableCExtensions() (in module radiomics), 17
enableFeatureByName() (ra-

diomics.base.RadiomicsFeaturesBase method),
16

enableFeatureClassByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

enableFeaturesByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

enableInputImageByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 9

enableInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 9

execute() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

execute() (radiomics.generalinfo.GeneralInfo method),
15

G
GeneralInfo (class in radiomics.generalinfo), 15
generateAngles() (in module radiomics.imageoperations),

12
get10PercentileFeatureValue() (ra-

diomics.firstorder.RadiomicsFirstOrder
method), 19

get90PercentileFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getAutocorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
25

getAverageIntensityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
25
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getBinEdges() (in module radiomics.imageoperations),
11

getBoundingBoxValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getClusterProminenceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getClusterShadeFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getClusterTendencyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getCompactness1FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getCompactness2FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getContrastFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getCorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getDifferenceAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getDifferenceEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getDifferenceVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getDissimilarityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getElongationFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getEnergyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getEnergyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getEntropyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getExponentialImage() (in module ra-

diomics.imageoperations), 15
getFeatureClasses() (in module radiomics), 17
getFeatureClassNames() (ra-

diomics.featureextractor.RadiomicsFeaturesExtractor
method), 11

getFeatureNames() (ra-
diomics.base.RadiomicsFeaturesBase class
method), 16

getFeatureNames() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 11

getFlatnessFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getGeneralSettingsValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getGrayLevelNonUniformityFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getGrayLevelNonUniformityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getGrayLevelNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
34

getGrayLevelNonUniformityNormalizedFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
31

getGrayLevelVarianceFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getGrayLevelVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getHighGrayLevelRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
36

getHighGrayLevelZoneEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getHomogeneity1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getHomogeneity2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getIdFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 28

getIdmFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 28

getIdmnFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28
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getIdnFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 28

getImageHashValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getImageSpacingValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getImc1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getImc2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getInputImagesValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getInputImageTypes() (in module radiomics), 17
getInterquartileRangeFeatureValue() (ra-

diomics.firstorder.RadiomicsFirstOrder
method), 20

getInverseVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getKurtosisFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 21

getLargeAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
30

getLargeAreaHighGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
33

getLargeAreaLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method), 32

getLogarithmImage() (in module ra-
diomics.imageoperations), 14

getLoGImage() (in module radiomics.imageoperations),
13

getLongRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getLongRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getLongRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getLowGrayLevelRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getLowGrayLevelZoneEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getMaskHashValue() (radiomics.generalinfo.GeneralInfo
method), 15

getMaximum2DDiameterColumnFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getMaximum2DDiameterRowFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getMaximum2DDiameterSliceFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getMaximum3DDiameterFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getMaximumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getMaximumProbabilityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getMeanAbsoluteDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getMeanFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getMedianFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getMinimumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getOriginalImage() (in module ra-
diomics.imageoperations), 13

getProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 10

getRangeFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getRobustMeanAbsoluteDeviationFeatureValue()
(radiomics.firstorder.RadiomicsFirstOrder
method), 20

getRootMeanSquaredFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getRunEntropyFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getRunLengthNonUniformityFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getRunLengthNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
35

getRunPercentageFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
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35
getRunVarianceFeatureValue() (ra-

diomics.glrlm.RadiomicsGLRLM method),
35

getShortRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getShortRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getShortRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getSizeZoneNonUniformityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getSizeZoneNonUniformityNormalizedFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
31

getSkewnessFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getSmallAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
30

getSmallAreaHighGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
32

getSmallAreaLowGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
32

getSphericalDisproportionFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
23

getSphericityFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getSquareImage() (in module ra-
diomics.imageoperations), 14

getSquareRootImage() (in module ra-
diomics.imageoperations), 14

getStandardDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 20

getSumAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumSquaresFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumVariance2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSurfaceAreaFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getSurfaceVolumeRatioFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getTotalEnergyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 19

getUniformityFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 21

getVarianceFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 21

getVersionValue() (radiomics.generalinfo.GeneralInfo
method), 15

getVolumeFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
22

getVolumeNumValue() (ra-
diomics.generalinfo.GeneralInfo method),
15

getVoxelNumValue() (radiomics.generalinfo.GeneralInfo
method), 16

getWaveletImage() (in module ra-
diomics.imageoperations), 13

getZoneEntropyFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getZonePercentageFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getZoneVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

L
loadImage() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 10
loadParams() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 8

N
normalizeImage() (in module ra-

diomics.imageoperations), 13

R
radiomics (module), 17
radiomics.base (module), 16
radiomics.featureextractor (module), 7
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radiomics.firstorder (module), 18
radiomics.generalinfo (module), 15
radiomics.glcm (module), 24
radiomics.glrlm (module), 33
radiomics.glszm (module), 30
radiomics.imageoperations (module), 11
radiomics.shape (module), 21
RadiomicsFeaturesBase (class in radiomics.base), 16
RadiomicsFeaturesExtractor (class in ra-

diomics.featureextractor), 7
RadiomicsFirstOrder (class in radiomics.firstorder), 18
RadiomicsGLCM (class in radiomics.glcm), 24
RadiomicsGLRLM (class in radiomics.glrlm), 33
RadiomicsGLSZM (class in radiomics.glszm), 30
RadiomicsShape (class in radiomics.shape), 21
resampleImage() (in module radiomics.imageoperations),

13

S
setVerbosity() (in module radiomics), 18
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