
pyradiomics Documentation
Release 1.1.1.post99+g737ac26

pyradiomics community

May 30, 2017

Contents

1 Table of Contents 3
1.1 Installation . 3
1.2 Usage . 4
1.3 Pipeline Modules . 11
1.4 Radiomic Features . 23
1.5 Developers . 44
1.6 Frequently Asked Questions . 48
1.7 Release Notes . 51

2 Feature Classes 59

3 Filter Classes 61

4 Supporting reproducible extraction 63

5 3rd-party packages used in pyradiomics 65

6 Installation 67

7 Pyradiomics Indices and Tables 69

8 License 71

9 Developers 73

10 Contact 75

Python Module Index 77

i

ii

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

This is an open-source python package for the extraction of Radiomics features from medical imaging. With this
package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained open-
source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community. The platform supports both the feature extraction in 2D and 3D.

If you publish any work which uses this package, please cite the following publication: Joost JM van Griethuy-
sen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina GH Beets-Tan, Jean-
Christophe Fillion-Robin, Steve Pieper, Hugo JWL Aerts, “Computational Radiomics System to Decode the Radio-
graphic Phenotype”; Submitted 2017

Note: This work was supported in part by the US National Cancer Institute grant 5U24CA194354, QUANTITATIVE
RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.

Contents 1

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

2 Contents

CHAPTER 1

Table of Contents

Installation

Get the code

• Ensure you have the version control system git installed on your machine.

• Ensure that you have python installed on your machine, at least version 2.7 or 3.4.

• Clone the repository:

– git clone git://github.com/Radiomics/pyradiomics

Installation on your system

• For unix like systems (MacOSX, linux):

– cd pyradiomics

– python -m pip install -r requirements.txt

– python setup.py install

To use your build for interactive use and development: * python setup.py develop

– If you don’t have sudo/admin rights on your machine, you need to locally install numpy, nose, tqdm,
PyWavelets, SimpleITK (specified in requirements.txt). In a bash shell:

pip install --user --upgrade pip
export PATH=$HOME/.local/bin:$PATH
pip install --user -r requirements.txt
export PYTHONPATH=$HOME/.local/lib64/python2.7/site-packages

• For Windows:

– cd pyradiomics

3

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

– python -m pip install -r requirements.txt

– python setup.py install

Usage

Instruction Video

Example

• PyRadiomics example code and data is available in the Github repository

• The sample sample data is provided in pyradiomics/data

• Use jupyter to run the helloRadiomics example, located in pyradiomics/examples/Notebooks

• Jupyter can also be used to run the example notebook as shown in the instruction video

– The example notebook can be found in pyradiomics/examples/Notebooks

– The parameter file used in the instruction video is available in pyradiomics/examples/
exampleSettings

• If jupyter is not installed, run the python script alternative (pyradiomics/examples/
helloRadiomics.py):

– python helloRadiomics.py

Command Line Use

• PyRadiomics has 2 commandline scripts, pyradiomics is for single image feature extraction and
pyradiomicsbatch is for feature extraction from a batch of images and segmentations.

• Both scripts can be run directly from a command line window, anywhere in your system.

• To extract features from a single image and segmentation run:

pyradiomics <path/to/image> <path/to/segmentation>

• To extract features from a batch run:

pyradiomicsbatch <path/to/input> <path/to/output>

• The input file for batch processing is a CSV file where the first row is contains headers and each subsequent row
represents one combination of an image and a segmentation and contains at least 2 elements: 1) path/to/image,
2) path/to/mask. The headers specify the column names and must be “Image” and “Mask” for image and mask
location, respectively (capital sensitive). Additional columns may also be specified, all columns are copied to
the output in the same order (with calculated features appended after last column).

Note: All headers should be unique and different from headers provided by PyRadiomics
(<filter>_<class>_<feature>).

• For more information on passing parameter files, setting up logging and controlling output format, run:

pyradiomics -h
pyradiomicsbatch -h

4 Chapter 1. Table of Contents

https://github.com/Radiomics/pyradiomics
http://jupyter.org/

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Interactive Use

• (LINUX) Add pyradiomics to the environment variable PYTHONPATH:

– setenv PYTHONPATH /path/to/pyradiomics/radiomics

• Start the python interactive session:

– python

• Import the necessary classes:

from radiomics import featureextractor, getTestCase
import six
import sys, os

• Set up a pyradiomics directory variable:

dataDir = '/path/to/pyradiomics'

• You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.

• Store the path of your image and mask in two variables:

imageName, maskName = getTestCase('brain1', dataDir)

• Also store the path to the file containing the extraction settings:

params = os.path.join(dataDir, "examples", "exampleSettings", "Params.yaml")

• Instantiate the feature extractor class with the parameter file:

extractor = featureextractor.RadiomicsFeaturesExtractor(params)

• Calculate the features:

result = extractor.execute(imageName, maskName)
for key, val in six.iteritems(result):
print("\t%s: %s" %(key, val))

• See the feature extractor class for more information on using this core class.

PyRadiomics in 3D Slicer

A convenient front-end interface is provided as the ‘Radiomics’ extension for 3D Slicer. It is available here.

Using feature classes directly

• This represents an example where feature classes are used directly, circumventing checks and preprocessing
done by the radiomics feature extractor class, and is not intended as standard use example.

• (LINUX) Add pyradiomics to the environment variable PYTHONPATH:

– setenv PYTHONPATH /path/to/pyradiomics/radiomics

• Start the python interactive session:

– python

1.2. Usage 5

https://github.com/Radiomics/SlicerRadiomics

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

• Import the necessary classes:

from radiomics import firstorder, glcm, imageoperations, shape, glrlm, glszm,
→˓getTestCase
import SimpleITK as sitk
import six
import sys, os

• Set up a data directory variable:

dataDir = '/path/to/pyradiomics/data'

• You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.

• Use SimpleITK to read a the brain image and mask:

imageName, maskName = getTestCase('brain1', dataDir)
image = sitk.ReadImage(imageName)
mask = sitk.ReadImage(maskName)

• Calculate the first order features:

firstOrderFeatures = firstorder.RadiomicsFirstOrder(image,mask)
firstOrderFeatures.calculateFeatures()
for (key,val) in six.iteritems(firstOrderFeatures.featureValues):
print("\t%s: %s" % (key, val))

• See the Radiomic Features section for more features that you can calculate.

Setting Up Logging

PyRadiomics features extensive logging to help track down any issues with the extraction of features. By default
PyRadiomics logging reports messages of level INFO and up (giving some information on progress during extraction
and any warnings or errors that occur), and prints this to the output (stderr). By default, PyRadiomics does not create
a log file.

To change the amount of information that is printed to the output, use setVerbosity() in interactive use and the
optional --verbosity argument in commandline use.

When using PyRadiomics in interactive mode, enable storing the PyRadiomics logging in a file by adding an appro-
priate handler to the pyradiomics logger:

import radiomics

log_file = 'path/to/log_file.txt'
handler = logging.FileHandler(filename=log_file, mode='w') # overwrites log_files
→˓from previous runs. Change mode to 'a' to append.
formatter = logging.Formatter("%(levelname)s:%(name)s: %(message)s") # format string
→˓for log messages
handler.setFormatter(formatter)
radiomics.logger.addHandler(handler)

Control the amount of logging stored by setting the level of the logger. N.B. if
→˓the level is higher than the
Verbositiy level, the logger level will also determine the amount of information
→˓printed to the output
radiomics.logger.setLevel(logging.DEBUG)

6 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

To store a log file when running pyradiomics from the commandline, specify a file location in the optional
--log-file argument. The amount of logging that is stored is controlled by the --log-level argument.

Customizing the Extraction

There are 3 ways in which the feature extraction can be customized in PyRadiomics: 1) Specifying which image types
(original/derived) to use to extract features from, 2) Specifying which feature(class) to extract, 3) Specifying settings,
which control the pre processing and customize the behaviour of filters and feature classes.

Image Types

These are the input image types (either the original image or derived images) that can be used to extract features from.
The image types that are available are determined dynamically (all functions in imageoperations.py that fit the
signature of a filter.

The enabled types are stored in the inputImages dictionary in the feature extractor class instance
and can be changed using the functions enableAllInputImages(), disableAllInputImages(),
enableInputImageByName() and enableInputImages(). Moreover, custom settings can be provided
for each enabled input type, which will then only be applied for that input image type. Please note that this will only
work for settings that are applied at or after any filter is applied (i.e. not at the feature extractor level).

By default, only the original input type is enabled.

Enabled Features

These are the features that are extracted from each (original and/or derived) input image. The available features are
determined dynamically, and are ordered in feature classes. For more information on the signature used to identify
features and feature classes, see the Developers <radiomics-developers> section.

The enable features are stored in the enabledFeatures dictionary in the feature extractor class in-
stance and can be changed using the functions enableAllFeatures(), disableAllFeatures(),
enableFeatureClassByName() and enableFeaturesByName(). Each key-value pair in the dictionary
represents one enabled feature class with the feature class name as the key and a list of enabled feature names as value.
If the value is None or an empty list, all features in that class are enabled. Otherwise only the features specified.

By default, all feature classes and all features are enabled.

Settings

Besides customizing what to extract (image types, features), PyRadiomics exposes various settings customizing how
the features are extracted. These settings operate at different levels. E.g. resampling is done just after the images
are loaded (in the feature extractor), so settings controlling the resampling operate only on the feature extractor level.
Settings are stored in the setttings dictionary in the feature extractor class instance, where the key is the case
sensitive setting name. Custom settings are provided as keyword arguments at initialization of the feature extractor
(with the setting name as keyword and value as the argument value, e.g. binWidth=25), or by interacting directly
with the settings dictionary.

Note: When using the feature classes directly, feature class level settings can be customized by providing them as
keyword arguments at initialization of the feature class.

1.2. Usage 7

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Below are the settings that control the behaviour of the extraction, ordered per level and category. Each setting is
listed as it’s unique, case sensitive name, followed by it’s default value in brackets. After the default value is the
documentation on the type of the value and what the setting controls.

Feature Extractor Level

Image Normalization

• normalize [False]: Boolean, set to True to enable normalizing of the image before any resampling. See also
normalizeImage().

• normalizeScale [1]: Float, > 0, determines the scale after normalizing the image. If normalizing is disabled, this
has no effect.

• removeOutliers [None]: Float, > 0, defines the outliers to remove from the image. An outlier is defined as values
that differ more than 𝑛𝜎𝑥 from the mean, where 𝑛 > 0 and equal to the value of this setting. If this parameter
is omitted (providing it without a value (i.e. None) in the parameter file will throw an error), no outliers are
removed. If normalizing is disabled, this has no effect. See also normalizeImage().

Resampling the image

• resampledPixelSpacing [None]: List of 3 floats (> 0), sets the size of the voxel in (x, y, z) plane when resampling.

• interpolator [sitkBSpline]: Simple ITK constant or string name thereof, sets interpolator to use for resampling.
Enumerated value, possible values:

– sitkNearestNeighbor (= 1)

– sitkLinear (= 2)

– sitkBSpline (= 3)

– sitkGaussian (= 4)

– sitkLabelGaussian (= 5)

– sitkHammingWindowedSinc (= 6)

– sitkCosineWindowedSinc (= 7)

– sitkWelchWindowedSinc (= 8)

– sitkLanczosWindowedSinc (= 9)

– sitkBlackmanWindowedSinc (= 10)

• padDistance [5]: Integer, ≥ 0, set the number of voxels pad cropped tumor volume with during resampling.
Padding occurs in new feature space and is done on all faces, i.e. size increases in x, y and z direction by
2*padDistance. Padding is needed for some filters (e.g. LoG). Value of padded voxels are set to original gray
level intensity, padding does not exceed original image boundaries. N.B. After application of filters image is
cropped again without padding.

Note: Resampling is disabled when either resampledPixelSpacing or interpolator is set to None

Mask validation

• minimumROIDimensions [1]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, respec-
tively). Single-voxel segmentations are always excluded.

• minimumROISize [None]: Integer, > 0, specifies the minimum number of voxels required. Test is skipped if
this parameter is omitted (specifying it as None in the parameter file will throw an error).

8 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

• geometryTolerance [None]: Float, determines the tolarance used by SimpleITK to compare origin, direction and
spacing between image and mask. Affects the fist step in checkMask(). If set to None, PyRadiomics will
use SimpleITK default (1e-16).

• correctMask [False]: Boolean, if set to true, PyRadiomics will attempt to resample the mask to the image
geometry when the first step in checkMask() fails. This uses a nearest neighbor interpolator. Mask check
will still fail if the ROI defined in the mask includes areas outside of the image physical space.

Miscellaneous

• enableCExtensions [True]: Boolean, set to False to force calculation to full-python mode. See also
enableCExtensions().

• additionalInfo [True]: boolean, set to False to disable inclusion of additional information on the extraction in
the output. See also addProvenance().

Filter Level

Laplacian of Gaussian settings

• sigma: List of floats or integers, must be greater than 0. Sigma values to use for the filter (determines coarseness).

Warning: Setting for sigma must be provided if LoG filter is enabled. If omitted, no LoG image features are
calculated and the function will return an empty dictionary.

Wavelet settings

• start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions from which
a signature is calculated

• level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.

• wavelet [”coif1”]: string, type of wavelet decomposition. Enumerated value, validated against possible val-
ues present in the pyWavelet.wavelist(). Current possible values (pywavelet version 0.4.0) (where an
aditional number is needed, range of values is indicated in []):

– haar

– dmey

– sym[2-20]

– db[1-20]

– coif[1-5]

– bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

– rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

Feature Class Level

Image discretization

• binWidth [25]: Float, > 0, size of the bins when making a histogram and for discretization of the image gray
level.

Forced 2D extraction

1.2. Usage 9

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

• force2D [False]: Boolean, set to true to force a by slice texture calculation. Dimension that identifies the ‘slice’
can be defined in force2Ddimension. If input ROI is already a 2D ROI, features are automatically extracted
in 2D. See also generateAngles()

• force2Ddimension [0]: int, range 0-2. Specifies the ‘slice’ dimension for a by-slice feature extraction. Value
0 identifies the ‘z’ dimension (axial plane feature extraction), and features will be extracted from the xy
plane. Similarly, 1 identifies the y dimension (coronal plane) and 2 the x dimension (saggital plane). if
force2Dextraction is set to False, this parameter has no effect. See also generateAngles()

Texture matrix weighting

• weightingNorm [None]: string, indicates which norm should be used when applying distance weighting. Enu-
merated setting, possible values:

– ‘manhattan’: first order norm

– ‘euclidean’: second order norm

– ‘infinity’: infinity norm.

– ‘no_weighting’: GLCMs are weighted by factor 1 and summed

– None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and option ‘no_weighting’ is used.

Note: This only affects the GLCM and GLRLM feature classes. Moreover, weighting is applied differently in those
classes. For more information on how weighting is applied, see the documentation on GLCM and GLRLM.

Feature Class Specific Settings

First Order

• voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total Energy
and RMS, this is to prevent negative values. If using CT data, or data normalized with mean 0, consider setting
this parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the image. Bear in mind
however, that the larger the value, the larger the volume confounding effect will be.

GLCM

• distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for
which angles should be generated. See also generateAngles()

The Parameter File

All 3 types of customization can be provided in a single yaml-structured text file, which can be provided in an optional
argument (--param) when running pyradiomics from the command line. In interactive mode, it can be provided
during initialization of the feature extractor, or using loadParams() after initialization. This removes the need to
hard code a customized extraction in a python script through use of functions described above. Additionally, this also
makes it more easy to share settings for customized extractions.

Note: Examples of the parameter file are provided in the pyradiomics/examples/exampleSettings
folder.

10 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

The paramsFile is written according to the YAML-convention (www.yaml.org) and is checked by the code for con-
sistency. Only one yaml document per file is allowed. Settings must be grouped by customization type as mentioned
above. This is reflected in the structure of the document as follows:

<Customization Type>:
<Setting Name>: <value>
...

<Customization Type>:
...

Blank lines may be inserted to increase readability, these are ignored by the parser. Additional comments are also
possible, these are preceded by an ‘#’ and can be inserted on a blank line, or on a line containing settings:

This is a line containing only comments
setting: # This is a comment placed after the declaration of the 'setting' group.

Any keyword, such as a customization type or setting name may only be mentioned once. Multiple instances do not
raise an error, but only the last one encountered is used.

The three setting types are named as follows:

1. inputImage: input image to calculate features on. <value> is custom kwarg settings (dictionary). if <value> is
an empty dictionary (‘{}’), no custom settings are added for this input image.

2. featureClass: Feature class to enable, <value> is list of strings representing enabled features. If no <value> is
specified or <value> is an empty list (‘[]’), all features for this class are enabled.

3. setting: Setting to use for pre processing and class specific settings. if no <value> is specified, the value for this
setting is set to None.

Note:

• settings not specified in parameters are set to their default value.

• enabledFeatures are replaced by those in parameters (i.e. only specified features/classes are enabled. If the
‘featureClass’ customization type is omitted, all featureClasses and features are enabled.

• inputImages are replaced by those in parameters (i.e. only specified types are used to extract features from.
If the ‘inputImage’ customization type is ommited, only original image is used for feature extraction, with no
additional custom settings.

Pipeline Modules

This section contains the documentation on the various modules used to define the PyRadiomics pipeline and pre-
process the input data. Feature class modules, which contain the feature definitions are documented in the Radiomic
Features section.

Additionally, this section contains the documentation for the radiomics.generalinfo module, which provides the addi-
tional information about the extraction in the output. This additional information is added to enhance reproducibility
of the results.

Finally, this section contains documentation for the global functions, which are used throughout the toolbox (such as
logging and the C extensions) and the radiomics.base module, which defines the common interface for the feature
classes.

1.3. Pipeline Modules 11

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Feature Extractor

class radiomics.featureextractor.RadiomicsFeaturesExtractor(*args, **kwargs)
Wrapper class for calculation of a radiomics signature. At and after initialisation various settings can be used
to customize the resultant signature. This includes which classes and features to use, as well as what should be
done in terms of preprocessing the image and what images (original and/or filtered) should be used as input.

Then a call to execute() generates the radiomics signature specified by these settings for the passed image
and labelmap combination. This function can be called repeatedly in a batch process to calculate the radiomics
signature for all image and labelmap combinations.

At initialization, a parameters file can be provided containing all necessary settings. This is done by passing the
location of the file as the single argument in the initialization call, without specifying it as a keyword argument.
If such a file location is provided, any additional kwargs are ignored. Alternatively, at initialisation, custom
settings can be provided as keyword arguments, with the setting name as key and its value as the argument
value (e.g. binWidth=25). For mor information on possible settings and customization, see Customizing the
Extraction.

By default, all features in all feature classes are enabled. By default, only Original input image is enabled (No
filter applied).

addProvenance(provenance_on=True)
Enable or disable reporting of additional information on the extraction. This information includes toolbox
version, enabled input images and applied settings. Furthermore, additional information on the image and
region of interest (ROI) is also provided, including original image spacing, total number of voxels in the
ROI and total number of fully connected volumes in the ROI.

To disable this, call addProvenance(False).

loadParams(paramsFile)
Parse specified parameters file and use it to update settings, enabled feature(Classes) and input images.
For more information on the structure of the parameter file, see Customizing the extraction.

If supplied file does not match the requirements (i.e. unrecognized names or invalid values for a setting),
a pykwalify error is raised.

enableAllInputImages()
Enable all possible input images without any custom settings.

disableAllInputImages()
Disable all input images.

enableInputImageByName(inputImage, enabled=True, customArgs=None)
Enable or disable specified input image. If enabling input image, optional custom settings can be specified
in customArgs.

Current possible input images are:

•Original: No filter applied

•Wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying
either a High or a Low pass filter in each of the three dimensions. See also getWaveletImage()

•LoG: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change,
where sigma defines how coarse the emphasised texture should be. A low sigma emphasis on fine
textures (change over a short distance), where a high sigma value emphasises coarse textures (gray
level change over a large distance). See also getLoGImage()

•Square: Takes the square of the image intensities and linearly scales them back to the original range.
Negative values in the original image will be made negative again after application of filter.

12 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

•SquareRoot: Takes the square root of the absolute image intensities and scales them back to original
range. Negative values in the original image will be made negative again after application of filter.

•Logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
negative original values are made negative again after application of filter.

•Exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
scaled to original range and negative original values are made negative again after application of filter.

For the mathmetical formulas of square, squareroot, logarithm and exponential, see their
respective functions in imageoperations (getSquareImage(), getSquareRootImage(),
getLogarithmImage() and getExponentialImage(), respectively).

enableInputImages(**inputImages)
Enable input images, with optionally custom settings, which are applied to the respective input image.
Settings specified here override those in kwargs. The following settings are not customizable:

•interpolator

•resampledPixelSpacing

•padDistance

Updates current settings: If necessary, enables input image. Always overrides custom settings specified
for input images passed in inputImages. To disable input images, use enableInputImageByName()
or disableAllInputImages() instead.

Parameters inputImages – dictionary, key is imagetype (original, wavelet or log) and value
is custom settings (dictionary)

enableAllFeatures()
Enable all classes and all features.

disableAllFeatures()
Disable all classes.

enableFeatureClassByName(featureClass, enabled=True)
Enable or disable all features in given class.

enableFeaturesByName(**enabledFeatures)
Specify which features to enable. Key is feature class name, value is a list of enabled feature names.

To enable all features for a class, provide the class name with an empty list or None as value. Set-
tings for feature classes specified in enabledFeatures.keys are updated, settings for feature classes not yet
present in enabledFeatures.keys are added. To disable the entire class, use disableAllFeatures()
or enableFeatureClassByName() instead.

execute(imageFilepath, maskFilepath, label=None)
Compute radiomics signature for provide image and mask combination. It comprises of the following
steps:

1.Image and mask are loaded and normalized/resampled if necessary.

2.Validity of ROI is checked using checkMask(), which also computes and returns the bounding box.

3.If enabled, provenance information is calculated and stored as part of the result.

4.Shape features are calculated on a cropped (no padding) version of the original image.

5.Other enabled featureclasses are calculated using all specified input image types in inputImages.
Images are cropped to tumor mask (no padding) after application of any filter and before being passed
to the feature class.

6.The calculated features is returned as collections.OrderedDict.

1.3. Pipeline Modules 13

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Parameters

• imageFilepath – SimpleITK Image, or string pointing to image file location

• maskFilepath – SimpleITK Image, or string pointing to labelmap file location

• label – Integer, value of the label for which to extract features. If not specified, last
specified label is used. Default label is 1.

Returns dictionary containing calculated signature (“<fil-
ter>_<featureClass>_<featureName>”:value).

loadImage(ImageFilePath, MaskFilePath)
Preprocess the image and labelmap. If ImageFilePath is a string, it is loaded as SimpleITK Image and
assigned to image, if it already is a SimpleITK Image, it is just assigned to image. All other cases are
ignored (nothing calculated). Equal approach is used for assignment of mask using MaskFilePath.

If normalizing is enabled image is first normalized before any resampling is applied.

If resampling is enabled, both image and mask are resampled and cropped to the tumor mask (with addi-
tional padding as specified in padDistance) after assignment of image and mask.

getProvenance(imageFilepath, maskFilepath, mask)
Generates provenance information for reproducibility. Takes the original image & mask filepath, as well
as the resampled mask which is passed to the feature classes. Returns a dictionary with keynames coded
as “general_info_<item>”. For more information on generated items, see generalinfo

computeFeatures(image, mask, inputImageName, **kwargs)
Compute signature using image, mask, **kwargs settings.

This function computes the signature for just the passed image (original or derived), it does not preprocess
or apply a filter to the passed image. Features / Classes to use for calculation of signature are defined in
self.enabledFeatures. See also enableFeaturesByName().

Note: shape descriptors are independent of gray level and therefore calculated separately (handeled in
execute). In this function, no shape functions are calculated.

getFeatureClassNames()
Returns a list of all possible feature classes.

getFeatureNames(featureClassName)
Returns a list of all possible features in provided featureClass

Image Processing and Filters

radiomics.imageoperations.getBinEdges(binwidth, parameterValues)
Calculate and return the histogram using parameterValues (1D array of all segmented voxels in the image).
Parameter binWidth determines the fixed width of each bin. This ensures comparable voxels after binning, a
fixed bin count would be dependent on the intensity range in the segmentation.

Returns the bin edges, a list of the edges of the calculated bins, length is N(bins) + 1. Bins are defined such, that
the bin edges are equally spaced from zero, and that the leftmost edge ≤ min(𝑋𝑔𝑙).

Example: for a ROI with values ranging from 54 to 166, and a bin width of 25, the bin edges will be [50, 75,
100, 125, 150, 175].

This value can be directly passed to numpy.histogram to generate a histogram or numpy.digitize to
discretize the ROI gray values. See also binImage().

14 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

References

•Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-
PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(Au-
gust):11075.

radiomics.imageoperations.binImage(binwidth, parameterMatrix, parameterMatrixCoordi-
nates)

Discretizes the parameterMatrix (matrix representation of the gray levels in the ROI) using the binEdges cal-
culated using getBinEdges(). Only voxels defined by parameterMatrixCoordinates (defining the segmen-
tation) are used for calculation of histogram and subsequently discretized. Voxels outside segmentation are left
unchanged.

𝑋𝑏,𝑖 = ⌊𝑋𝑔𝑙,𝑖

𝑊 ⌋ − ⌊min(𝑋𝑔𝑙)
𝑊 ⌋ + 1

Here, 𝑋𝑔𝑙,𝑖 and 𝑋𝑏,𝑖 are gray level intensities before and after discretization, respectively. 𝑊 is the bin width
value (specfied in binWidth parameter). The first part of the formula ensures that the bins are equally spaced
from 0, whereas the second part ensures that the minimum gray level intensity inside the ROI after binning is
always 1.

If the range of gray level intensities is equally dividable by the binWidth, i.e. (max(𝑋𝑔𝑙) − min(𝑋𝑔𝑙))
mod 𝑊 = 0, the maximum intensity will be encoded as numBins + 1, therefore the maximum number of
gray level intensities in the ROI after binning is number of bins + 1.

Warning: This is different from the assignment of voxels to the bins by numpy.histogram , which has
half-open bins, with the exception of the rightmost bin, which means this maximum values are assigned to
the topmost bin. numpy.digitize uses half-open bins, including the rightmost bin.

radiomics.imageoperations.generateAngles(size, **kwargs)
Generate all possible angles for specified distances in distances in 3D. E.g. for d = 1, 13 angles are generated
and for d = 2, 49 angles are generated (representing the 26 connected region for distance 1, and the 98 connected
region for distance 2). Angles are generated with the following steps:

1.All angles for distance = 1 to the maximum distance specified in distances are generated.

2.Only angles are retained, for which the maximum step size in any dimension (i.e. the infinity norm distance
from the center voxel) is present in distances.

3.“Impossible” angles (where ‘neighbouring’ voxels will always be outside delineation) are deleted.

4.If force2Dextraction is enabled, all angles defining a step in the force2Ddimension are re-
moved (e.g. if this dimension is 0, all angles that have a non-zero step size at index 0 (z dimension) are
removed, resulting in angles that only move in the x and/or y dimension).

Parameters

• size – dimensions (z, x, y) of the bounding box of the tumor mask.

• kwargs – The following additional parameters can be specified here (default values in
brackets):

– distances [[1]]: List of integers. This specifies the distances between the center voxel and
the neighbor, for which angles should be generated.

– force2D [False]: Boolean, set to true to force a by slice texture calculation. Dimension
that identifies the ‘slice’ can be defined in force2Ddimension. If input ROI is already
a 2D ROI, features are automatically extracted in 2D.

– force2Ddimension [0]: int, range 0-2. Specifies the ‘slice’ dimension for a by-slice fea-
ture extraction. Value 0 identifies the ‘z’ dimension (axial plane feature extraction), and

1.3. Pipeline Modules 15

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

features will be extracted from the xy plane. Similarly, 1 identifies the y dimension (coro-
nal plane) and 2 the x dimension (saggital plane). if force2Dextraction is set to
False, this parameter has no effect.

Returns numpy array with shape (N, 3), where N is the number of unique angles

radiomics.imageoperations.checkMask(imageNode, maskNode, **kwargs)
Checks whether the Region of Interest (ROI) defined in the mask size and dimensions match constraints, speci-
fied in settings. The following checks are performed.

1.Check whether the mask corresponds to the image (i.e. has a similar size, spacing, direction and origin).
N.B. This check is performed by SimpleITK, if it fails, an error is logged, with additional error
information from SimpleITK logged with level DEBUG (i.e. logging-level has to be set to debug to
store this information in the log file). The tolerance can be increased using the geometryTolerance
parameter. Alternatively, if the correctMask parameter is True, PyRadiomics will check if the mask
contains a valid ROI (inside image physical area) and if so, resample the mask to image geometry. See
Settings for more info.

2.Check if the label is present in the mask

3.Count the number of dimensions in which the size of the ROI > 1 (i.e. does the ROI represent a single
voxel (0), a line (1), a surface (2) or a volume (3)) and compare this to the minimum number of dimension
required (specified in minimumROIDimensions).

4.Optional. Check if there are at least N voxels in the ROI. N is defined in minimumROISize, this test is
skipped if minimumROISize = None.

This function returns a tuple of two items. The first item (if not None) is the bounding box of the mask. The
second item is the mask that has been corrected by resampling to the input image geometry (if that resampling
was successful).

If a check fails, an error is logged and a (None,None) tuple is returned. No features will be extracted
for this mask. If the mask passes all tests, this function returns the bounding box, which is used in the
cropToTumorMask() function.

The bounding box is calculated during (1.) and used for the subsequent checks. The bounding box is calculated
by SimpleITK.LabelStatisticsImageFilter() and returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z, U_z),
where ‘L’ and ‘U’ are lower and upper bound, respectively, and ‘x’, ‘y’ and ‘z’ the three image dimensions.

By reusing the bounding box calculated here, calls to SimpleITK.LabelStatisticsImageFilter() are reduced, im-
proving performance.

Uses the following settings:

•minimumROIDimensions [1]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, re-
spectively). Single-voxel segmentations are always excluded.

•minimumROISize [None]: Integer, > 0, specifies the minimum number of voxels required. Test is skipped
if this parameter is set to None.

Note: If the first check fails there are generally 2 possible causes:

1.The image and mask are matched, but there is a slight difference in origin, direction or spacing. The
exact cause, difference and used tolerance are stored with level DEBUG in a log (if enabled). For more
information on setting up logging, see “setting up logging” and the helloRadiomics examples (located in
the pyradiomics/examples folder). This problem can be fixed by changing the global tolerance
(geometryTolerance parameter) or enabling mask correction (correctMask parameter).

2.The image and mask do not match, but the ROI contained within the mask does represent a physical volume
contained within the image. If this is the case, resampling is needed to ensure matching geometry between

16 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

image and mask before features can be extracted. This can be achieved by enabling mask correction using
the correctMask parameter.

radiomics.imageoperations.cropToTumorMask(imageNode, maskNode, boundingBox)
Create a sitkImage of the segmented region of the image based on the input label.

Create a sitkImage of the labelled region of the image, cropped to have a cuboid shape equal to the ijk boundaries
of the label.

Parameters

• boundingBox – The bounding box used to crop the image. This is the bounding box as
returned by checkMask().

• label – [1], value of the label, onto which the image and mask must be cropped.

Returns Cropped image and mask (SimpleITK image instances).

radiomics.imageoperations.resampleImage(imageNode, maskNode, resampledPixelSpacing,
interpolator=3, label=1, padDistance=5)

Resamples image and mask to the specified pixel spacing (The default interpolator is Bspline).

Resampling can be enabled using the settings ‘interpolator’ and ‘resampledPixelSpacing’ in the parameter file
or as part of the settings passed to the feature extractor. See also feature extractor.

‘imageNode’ and ‘maskNode’ are SimpleITK Objects, and ‘resampledPixelSpacing’ is the output pixel spacing
(sequence of 3 elements).

Only part of the image and labelmap are resampled. The resampling grid is aligned to the input origin, but only
voxels covering the area of the image ROI (defined by the bounding box) and the padDistance are resampled.
This results in a resampled and partially cropped image and mask. Additional padding is required as some filters
also sample voxels outside of segmentation boundaries. For feature calculation, image and mask are cropped to
the bounding box without any additional padding, as the feature classes do not need the gray level values outside
the segmentation.

The resampling grid is calculated using only the input mask. Even when image and mask have different direc-
tions, both the cropped image and mask will have the same direction (equal to direction of the mask). Spacing
and size are determined by settings and bounding box of the ROI.

Note: Before resampling the bounds of the non-padded ROI are compared to the bounds. If the ROI bounding
box includes areas outside of the physical space of the image, an error is logged and (None, None) is returned.
No features will be extracted. This enables the input image and mask to have different geometry, so long as the
ROI defines an area within the image.

Note: The additional padding is adjusted, so that only the physical space within the mask is resampled. This
is done to prevent resampling outside of the image. Please note that this assumes the image and mask to image
the same physical space. If this is not the case, it is possible that voxels outside the image are included in the
resampling grid, these will be assigned a value of 0. It is therefore recommended, but not enforced, to use an
input mask which has the same or a smaller physical space than the image.

radiomics.imageoperations.normalizeImage(image, scale=1, outliers=None)
Normalizes the image by centering it at the mean with standard deviation. Normalization is based on all gray
values in the image, not just those inside the segementation.

𝑓(𝑥) = 𝑠(𝑥−𝜇𝑥)
𝜎𝑥

Where:

1.3. Pipeline Modules 17

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

•𝑥 and 𝑓(𝑥) are the original and normalized intensity, respectively.

•𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation of the image instensity values.

•𝑠 is an optional scaling defined by scale. By default, it is set to 1.

Optionally, outliers can be removed, in which case values for which 𝑥 > 𝜇𝑥 + 𝑛𝜎𝑥 or 𝑥 < 𝜇𝑥 − 𝑛𝜎𝑥 are set to
𝜇𝑥 + 𝑛𝜎𝑥 and 𝜇𝑥 − 𝑛𝜎𝑥, respectively. Here, 𝑛 > 0 and defined by outliers. This, in turn, is controlled by
the removeOutliers parameter. Removal of outliers is done after the values of the image are normalized,
but before scale is applied.

radiomics.imageoperations.applyThreshold(inputImage, lowerThreshold, upperThreshold, in-
sideValue=None, outsideValue=0)

radiomics.imageoperations.getOriginalImage(inputImage, **kwargs)
This function does not apply any filter, but returns the original image. This function is needed to dyanmically
expose the original image as a valid input image.

Returns Yields original image, ‘original’ and kwargs

radiomics.imageoperations.getLoGImage(inputImage, **kwargs)
Apply Laplacian of Gaussian filter to input image and compute signature for each filtered image.

Following settings are possible:

•sigma: List of floats or integers, must be greater than 0. Sigma values to use for the filter (determines
coarseness).

N.B. Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function will
return an empty dictionary.

Returned filter name reflects LoG settings: log-sigma-<sigmaValue>-3D.

Returns Yields log filtered image for each specified sigma, corresponding filter name and kwargs

radiomics.imageoperations.getWaveletImage(inputImage, **kwargs)
Apply wavelet filter to image and compute signature for each filtered image.

Following settings are possible:

•start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions from
which a signature is calculated

•level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.

•wavelet [”coif1”]: string, type of wavelet decomposition. Enumerated value, validated against possible
values present in the pyWavelet.wavelist(). Current possible values (pywavelet version 0.4.0)
(where an aditional number is needed, range of values is indicated in []):

–haar

–dmey

–sym[2-20]

–db[1-20]

–coif[1-5]

–bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

–rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

Returned filter name reflects wavelet type: wavelet[level]-<decompositionName>

N.B. only levels greater than the first level are entered into the name.

18 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Returns Yields each wavelet decomposition and final approximation, corresponding filter name and
kwargs

radiomics.imageoperations.getSquareImage(inputImage, **kwargs)
Computes the square of the image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) = (𝑐𝑥)2, where 𝑐 =
1√︀

max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields square filtered image, ‘square’ and kwargs

radiomics.imageoperations.getSquareRootImage(inputImage, **kwargs)
Computes the square root of the absolute value of image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) =

{︂ √
𝑐𝑥 for 𝑥 ≥ 0

−
√
−𝑐𝑥 for 𝑥 < 0

, where 𝑐 = max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields square root filtered image, ‘squareroot’ and kwargs

radiomics.imageoperations.getLogarithmImage(inputImage, **kwargs)
Computes the logarithm of the absolute value of the original image + 1.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑓(𝑥) =

{︂
𝑐 log (𝑥 + 1) for 𝑥 ≥ 0
−𝑐 log (−𝑥 + 1) for 𝑥 < 0

, where 𝑐 =

{︃
max(𝑥)

log(max(𝑥)+1) 𝑖𝑓 max(𝑥) ≥ 0
max(𝑥)

− log(−max(𝑥)−1) 𝑖𝑓 max(𝑥) < 0

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields logarithm filtered image, ‘logarithm’ and kwargs

radiomics.imageoperations.getExponentialImage(inputImage, **kwargs)
Computes the exponential of the original image.

Resulting values are rescaled on the range of the initial original image.

𝑓(𝑥) = 𝑒𝑐𝑥, where 𝑐 =
log(max(𝑥))

max(𝑥)

Where 𝑥 and 𝑓(𝑥) are the original and filtered intensity, respectively.

Returns Yields exponential filtered image, ‘exponential’ and kwargs

General Info Module

class radiomics.generalinfo.GeneralInfo(imagePath, maskPath, resampledMask, kwargs, in-
putImages)

execute()
Return a dictionary containing all general info items. Format is <info_item>:<value>, where the type of
the value is preserved. For CSV format, this will result in conversion to string and quotes where necessary,
for JSON, the values will be interpreted and stored as JSON strings.

1.3. Pipeline Modules 19

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getBoundingBoxValue()
Calculate and return the boundingbox extracted using the specified label. Elements 0, 1 and 2 are the x, y
and z coordinates of the lower bound, respectively. Elements 3, 4 and 5 are the size of the bounding box
in x, y and z direction, respectively.

Values are based on the resampledMask.

getGeneralSettingsValue()
Return a string representation of the settings contained in kwargs. Format is {<settings_name>:<value>,
...}.

getImageHashValue()
Returns the sha1 hash of the image. This enables checking whether two images are the same, regardless
of the file location.

If the reading of the image fails, an empty string is returned.

getImageSpacingValue()
Returns the original spacing of the image.

If the reading of the image fails, an empty string is returned.

getInputImagesValue()
Return a string representation of the enabled filters and any custom settings for the filter. Format is {<fil-
ter_name>:{<setting_name>:<value>, ...}, ...}.

getMaskHashValue()
Returns the sha1 hash of the mask. This enables checking whether two masks are the same, regardless of
the file location.

If the reading of the mask fails, an empty string is returned. Uses the original mask, specified in maskPath.

getVersionValue()
Return the current version of this package.

getVolumeNumValue()
Calculate and return the number of zones within the mask for the specified label. A zone is defined as
a group of connected neighbours that are segmented with the specified label, and a voxel is considered a
neighbour using 26-connectedness for 3D and 8-connectedness for 2D.

Values are based on the resampledMask.

getVoxelNumValue()
Calculate and return the number of voxels that have been segmented using the specified label.

Values are based on the resampledMask.

Feature Class Base

class radiomics.base.RadiomicsFeaturesBase(inputImage, inputMask, **kwargs)
Bases: object

This is the abstract class, which defines the common interface for the feature classes. All feature classes inherit
(directly of indirectly) from this class.

At initialization, image and labelmap are passed as SimpleITK image objects (inputImage and inputMask,
respectively.) The motivation for using SimpleITK images as input is to keep the possibility of reusing the
optimized feature calculators implemented in SimpleITK in the future. If either the image or the mask is None,
initialization fails and a warning is logged (does not raise an error).

Logging is set up using a child logger from the parent ‘radiomics’ logger. This retains the toolbox structure in
the generated log.

20 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

The following variables are instantiated at initialization:

•binWidth: bin width, as specified in **kwargs. If key is not present, a default value of 25 is used.

•label: label value of Region of Interest (ROI) in labelmap. If key is not present, a default value of 1 is used.

•verbose: boolean indication whether or not to provide progress reporting to the output.

•featureNames: list containing the names of features defined in the feature class. See
getFeatureNames()

•inputImage: Simple ITK image object of the input image

•inputMask: Simple ITK image object of the input labelmap

•imageArray: numpy array of the gray values in the input image

•maskArray: numpy array with elements set to 1 where labelmap = label, 0 otherwise

•matrix: numpy array of the gray values in the input image (with gray values inside ROI discretized when
necessary in the texture feature classes).

•matrixCoordinates: tuple of 3 numpy arrays containing the z, x and y coordinates of the voxels included
in the ROI, respectively. Length of each array is equal to total number of voxels inside ROI.

•targetVoxelArray: flattened numpy array of gray values inside ROI.

enableFeatureByName(featureName, enable=True)
Enables or disables feature specified by featureName. If feature is not present in this class, a lookup
error is raised. enable specifies whether to enable or disable the feature.

enableAllFeatures()
Enables all features found in this class for calculation.

disableAllFeatures()
Disables all features. Additionally resets any calculated features.

classmethod getFeatureNames()
Dynamically enumerates features defined in the feature class. Features are identified by the
get<Feature>FeatureValue signature, where <Feature> is the name of the feature (unique on the
class level).

Found features are returned as a list of the feature names ([<Feature1>, <Feature2>, ...]).

This function is called at initialization, found features are stored in the featureNames variable.

calculateFeatures()
Calculates all features enabled in enabledFeatures. A feature is enabled if it’s key is present in this
dictionary and it’s value is True.

Calculated values are stored in the featureValues dictionary, with feature name as key and the calcu-
lated feature value as value. If an exception is thrown during calculation, the error is logged, and the value
is set to NaN.

Global Toolbox Functions

radiomics.cMatsEnabled()
Returns a boolean indicating whether or not the C extensions are enabled. This function is called by the feature
classes to switch between C-enhanced calculation and full python mode.

radiomics.enableCExtensions(enabled=True)
By default, calculation of GLCM, GLRLM and GLSZM is done in C, using extension _cmatrices.py

1.3. Pipeline Modules 21

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

If an error occurs during loading of this extension, a warning is logged and the extension is disabled,
matrices are then calculated in python. The C extension can be disabled by calling this function as
enableCExtensions(False), which forces the calculation of the matrices to full-python mode.

Re-enabling use of C implementation is also done by this function, but if the extension is not loaded correctly,
a warning is logged and matrix calculation is forced to full-python mode.

radiomics.getFeatureClasses()
Iterates over all modules of the radiomics package using pkgutil and subsequently imports those modules.

Return a dictionary of all modules containing featureClasses, with modulename as key, abstract class object of
the featureClass as value. Assumes only one featureClass per module

This is achieved by inspect.getmembers. Modules are added if it contains a member that is a class, with name
starting with ‘Radiomics’ and is inherited from radiomics.base.RadiomicsFeaturesBase.

This iteration only runs once (at initialization of toolbox), subsequent calls return the dictionary created by the
first call.

radiomics.getInputImageTypes()
Returns a list of possible input image types. This function finds the image types dynamically by matching the
signature (“get<inputImage>Image”) against functions defined in imageoperations. Returns a list containing
available input image names (<inputImage> part of the corresponding function name).

This iteration only occurs once, at initialization of the toolbox. Found results are stored and returned on subse-
quent calls.

radiomics.getTestCase(testCase, repoDirectory=None)
This function provides an image and mask for testing PyRadiomics. One of five test cases can be selected:

•brain1

•brain2

•breast1

•lung1

•lung2

If the repository is available locally (including all five test cases, the path to the root folder of the repository
can be specified in repoDirectory, preventing unnecessary downloads. If the repository is not found, or
the repository does not contain the requested test case, PyRadiomics checks if it is run in development mode
(directly from the source code in the repository), and if so, if it can find the test case relative to it’s own location.

If the requested test case could not be found in the repository, PyRadiomics downloads the test case from the
GitHub repository and stores it in temporary files. If the test case was already downloaded, this is returned
instead.

Returns a tuple of two strings: (path/to/image.nrrd, path/to/mask.nrrd)

radiomics.setVerbosity(level)
Change the amount of information PyRadiomics should print out during extraction. The lower the level, the
more information is printed to the output (stderr).

Using the level (Python defined logging levels) argument, the following levels are possible:

•60: Quiet mode, no messages are printed to the stderr

•50: Only log messages of level “CRITICAL” are printed

•40: Log messages of level “ERROR” and up are printed

•30: Log messages of level “WARNING” and up are printed

22 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

•20: Log messages of level “INFO” and up are printed

•10: Log messages of level “DEBUG” and up are printed (i.e. all log messages)

By default, the radiomics logger is set to level “INFO” and the stderr handler to level “WARNING”. Therefore a
log storing the extraction log messages from level “INFO” and up can be easily set up by adding an appropriate
handler to the radiomics logger, while the output to stderr will still only contain warnings and errors.

Note: This function assumes the handler added to the radiomics logger at initialization of the toolbox is not
removed from the logger handlers and therefore remains the first handler.

Note: This does not affect the level of the logger itself (e.g. if verbosity level = 3, log messages with DEBUG
level can still be stored in a log file if an appropriate handler is added to the logger and the logging level of the
logger has been set to the correct level. Exception: In case the verbosity is set to DEBUG, the level of the logger
is also lowered to DEBUG. If the verbosity level is then raised again, the logger level will remain DEBUG.

Radiomic Features

This section contains the definitions of the various features that can be extracted using PyRadiomics. They are subdi-
vided into the following classes:

• First Order Features (19 features)

• Shape Features (16 features)

• Gray Level Co-occurrence Matrix (GLCM) Features (27 features)

• Gray Level Size Zone Matrix (GLSZM) Features (16 features)

• Gray Level Run Length Matrix (GLRLM) Features (16 features)

All feature classes, with the exception of shape can be calculated on either the original image and/or a derived image,
obtained by applying one of several filters. The shape descriptors are independent of gray value, and are extracted
from the label mask. If enabled, they are calculated separately of enabled input image types, and listed in the result as
if calculated on the original image.

First Order Features

class radiomics.firstorder.RadiomicsFirstOrder(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

First-order statistics describe the distribution of voxel intensities within the image region defined by the mask
through commonly used and basic metrics.

Let:

•X be a set of 𝑁 voxels included in the ROI

•P(𝑖) be the first order histogram with 𝑁𝑙 discrete intensity levels, where 𝑁𝑙 is the number of non-zero bins,
equally spaced from 0 with a width defined in the binWidth parameter.

•𝑝(𝑖) be the normalized first order histogram and equal to P(𝑖)∑︀
P(𝑖)

Following additional settings are possible:

1.4. Radiomic Features 23

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

•voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total
Energy and RMS, this is to prevent negative values. If using CT data, or data normalized with mean
0, consider setting this parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the
image. Bear in mind however, that the larger the value, the larger the volume confounding effect will be.

getEnergyFeatureValue()
1. Energy

energy =

𝑁∑︁
𝑖=1

(X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to Energy, instead of
voxels with gray level intensity closest to 0.

Energy is a measure of the magnitude of voxel values in an image. A larger values implies a greater sum
of the squares of these values.

Note: This feature is volume-confounded, a larger value of 𝑐 increases the effect of volume-confounding.

getTotalEnergyFeatureValue()
2. Total Energy

total energy = 𝑉𝑣𝑜𝑥𝑒𝑙

𝑁∑︁
𝑖=1

(X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to Energy, instead of
voxels with gray level intensity closest to 0.

Total Energy is the value of Energy feature scaled by the volume of the voxel in cubic mm.

Note: This feature is volume-confounded, a larger value of 𝑐 increases the effect of volume-confounding.

getEntropyFeatureValue()
3. Entropy

entropy = −
𝑁𝑙∑︁
𝑖=1

𝑝(𝑖) log2

(︀
𝑝(𝑖) + 𝜖

)︀
Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of
information required to encode the image values.

getMinimumFeatureValue()
4. Minimum

minimum = min(X)

get10PercentileFeatureValue()
5. 10th percentile

The 10th percentile of X

24 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

get90PercentileFeatureValue()
6. 90th percentile

The 90th percentile of X

getMaximumFeatureValue()
7. Maximum

maximum = max(X)

The maximum gray level intensity within the ROI.

getMeanFeatureValue()
8. Mean

mean =
1

𝑁

𝑁∑︁
𝑖=1

X(𝑖)

The average gray level intensity within the ROI.

getMedianFeatureValue()
9. Median

The median gray level intensity within the ROI.

getInterquartileRangeFeatureValue()
10. Interquartile Range

interquartile range = P75 − P25

Here P25 and P75 are the 25th and 75th percentile of the image array, respectively.

getRangeFeatureValue()
11. Range

range = max(X) − min(X)

The range of gray values in the ROI.

getMeanAbsoluteDeviationFeatureValue()
12. Mean Absolute Deviation (MAD)

MAD =
1

𝑁

𝑁∑︁
𝑖=1

|X(𝑖) − �̄�|

Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value of the image
array.

getRobustMeanAbsoluteDeviationFeatureValue()
13. Robust Mean Absolute Deviation (rMAD)

rMAD =
1

𝑁10−90

𝑁10−90∑︁
𝑖=1

|X10−90(𝑖) − �̄�10−90|

Robust Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value calcu-
lated on the subset of image array with gray levels in between, or equal to the 10th and 90th percentile.

1.4. Radiomic Features 25

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getRootMeanSquaredFeatureValue()
14. Root Mean Squared (RMS)

RMS =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(X(𝑖) + 𝑐)2

Here, 𝑐 is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in X. This ensures that voxels with the lowest gray values contribute the least to RMS, instead of
voxels with gray level intensity closest to 0.

RMS is the square-root of the mean of all the squared intensity values. It is another measure of the
magnitude of the image values. This feature is volume-confounded, a larger value of 𝑐 increases the effect
of volume-confounding.

getStandardDeviationFeatureValue()
15. Standard Deviation

standard deviation =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(X(𝑖) − �̄�)2

Standard Deviation measures the amount of variation or dispersion from the Mean Value. By definition,
:math:textit{standard deviation} = sqrt{textit{variance}}

getSkewnessFeatureValue(axis=0)
16. Skewness

skewness =
𝜇3

𝜎3
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)3(︂√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)2

)︂3

Where 𝜇3 is the 3rd central moment.

Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on
where the tail is elongated and the mass of the distribution is concentrated, this value can be positive or
negative.

Related links:

https://en.wikipedia.org/wiki/Skewness

Note: In case of a flat region, the standard deviation and 4rd central moment will be both 0. In this case,
a value of 0 is returned.

getKurtosisFeatureValue(axis=0)
17. Kurtosis

kurtosis =
𝜇4

𝜎4
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)4(︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)2

)︁2

Where 𝜇4 is the 4th central moment.

Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image ROI. A higher kurtosis
implies that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean.
A lower kurtosis implies the reverse: that the mass of the distribution is concentrated towards a spike near
the Mean value.

26 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/Skewness

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Related links:

https://en.wikipedia.org/wiki/Kurtosis

Note: In case of a flat region, the standard deviation and 4rd central moment will be both 0. In this case,
a value of 0 is returned.

getVarianceFeatureValue()
18. Variance

variance =
1

𝑁

𝑁∑︁
𝑖=1

(X(𝑖) − �̄�)2

Variance is the the mean of the squared distances of each intensity value from the Mean value. This is a
measure of the spread of the distribution about the mean. By definition, variance = 𝜎2

getUniformityFeatureValue()
19. Uniformity

uniformity =

𝑁𝑙∑︁
𝑖=1

𝑝(𝑖)2

Uniformity is a measure of the sum of the squares of each intensity value. This is a measure of the
heterogeneity of the image array, where a greater uniformity implies a greater heterogeneity or a greater
range of discrete intensity values.

Shape Features

class radiomics.shape.RadiomicsShape(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

In this group of features we included descriptors of the three-dimensional size and shape of the ROI. These
features are independent from the gray level intensity distribution in the ROI and are therefore only calculated
on the non-derived image and mask.

Let:

•𝑉 the volume of the ROI in mm3

•𝐴 the surface area of the ROI in mm2

getVolumeFeatureValue()
1. Volume

The volume of the ROI is approximated by multiplying the number of voxels in the ROI by the volume of
a single voxel.

getSurfaceAreaFeatureValue()
2. Surface Area

𝐴 =

𝑁∑︁
𝑖=1

1

2
|a𝑖b𝑖 × a𝑖c𝑖|

Where:

𝑁 is the number of triangles forming the surface mesh of the volume (ROI)

a𝑖b𝑖 and a𝑖c𝑖 are the edges of the 𝑖th triangle formed by points a𝑖, b𝑖 and c𝑖

1.4. Radiomic Features 27

https://en.wikipedia.org/wiki/Kurtosis

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Surface Area is an approximation of the surface of the ROI in mm2, calculated using a marching cubes
algorithm.

References:

•Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM
SIGGRAPH Comput Graph Internet. 1987;21:163-9.

getSurfaceVolumeRatioFeatureValue()
3. Surface Area to Volum ratio

surface to volume ratio =
𝐴

𝑉

Here, a lower value indicates a more compact (sphere-like) shape. This feature is not dimensionless, and
is therefore (partly) dependent on the volume of the ROI.

getSphericityFeatureValue()
4. Sphericity

sphericity =
3
√

36𝜋𝑉 2

𝐴

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It is a
dimensionless measure, independent of scale and orientation. The value range is 0 < 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 ≤ 1,
where a value of 1 indicates a perfect sphere (a sphere has the smallest possible surface area for a given
volume, compared to other solids).

Note: This feature is correlated to Compactness 1, Compactness 2 and Spherical Disproportion. In the
default parameter file provided in the pyradiomics/examples/exampleSettings folder, Com-
pactness 1 and Compactness 2 are therefore disabled.

getCompactness1FeatureValue()
5. Compactness 1

compactness 1 =
𝑉√
𝜋𝐴3

Similar to Sphericity, Compactness 1 is a measure of how compact the shape of the tumor is relative to
a sphere (most compact). It is therefore correlated to Sphericity and redundant. It is provided here for
completeness. The value range is 0 < 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 ≤ 1

6𝜋 , where a value of 1
6𝜋 indicates a perfect

sphere.

By definition, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 = 1
6𝜋

√
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 1

6𝜋

√︀
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦3.

Note: This feature is correlated to Compactness 2, Sphericity and Spherical Disproportion. In the default
parameter file provided in the pyradiomics/examples/exampleSettings folder, Compactness
1 and Compactness 2 are therefore disabled.

getCompactness2FeatureValue()
6. Compactness 2

compactness 2 = 36𝜋
𝑉 2

𝐴3

Similar to Sphericity and Compactness 1, Compactness 2 is a measure of how compact the shape of the
tumor is relative to a sphere (most compact). It is a dimensionless measure, independent of scale and
orientation. The value range is 0 < 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 ≤ 1, where a value of 1 indicates a perfect sphere.

28 Chapter 1. Table of Contents

http://portal.acm.org/citation.cfm?doid=37402.37422

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

By definition, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = (𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦)3

Note: This feature is correlated to Compactness 1, Sphericity and Spherical Disproportion. In the default
parameter file provided in the pyradiomics/examples/exampleSettings folder, Compactness
1 and Compactness 2 are therefore disabled.

getSphericalDisproportionFeatureValue()
7. Spherical Disproportion

spherical disproportion =
𝐴

4𝜋𝑅2
=

𝐴
3
√

36𝜋𝑉 2

Where 𝑅 is the radius of a sphere with the same volume as the tumor, and equal to 3

√︁
3𝑉
4𝜋 .

Spherical Disproportion is the ratio of the surface area of the tumor region to the surface area of a sphere
with the same volume as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value
range is 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ≥ 1, with a value of 1 indicating a perfect sphere.

Note: This feature is correlated to Compactness 1, Compactness 2 and Sphericity. In the default param-
eter file provided in the pyradiomics/examples/exampleSettings folder, Compactness 1 and
Compactness 2 are therefore disabled.

getMaximum3DDiameterFeatureValue()
8. Maximum 3D diameter

Maximum 3D diameter is defined as the largest pairwise Euclidean distance between surface voxels in the
ROI.

Also known as Feret Diameter.

Warning: This feature is only available when C Extensions are enabled

getMaximum2DDiameterSliceFeatureValue()
9. Maximum 2D diameter (Slice)

Maximum 2D diameter (Slice) is defined as the largest pairwise Euclidean distance between tumor surface
voxels in the row-column (generally the axial) plane.

Warning: This feature is only available when C Extensions are enabled

getMaximum2DDiameterColumnFeatureValue()
10. Maximum 2D diameter (Column)

Maximum 2D diameter (Column) is defined as the largest pairwise Euclidean distance between tumor
surface voxels in the row-slice (usually the coronal) plane.

Warning: This feature is only available when C Extensions are enabled

getMaximum2DDiameterRowFeatureValue()
11. Maximum 2D diameter (Row)

1.4. Radiomic Features 29

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Maximum 2D diameter (Row) is defined as the largest pairwise Euclidean distance between tumor surface
voxels in the column-slice (usually the sagittal) plane.

Warning: This feature is only available when C Extensions are enabled

getMajorAxisFeatureValue()
12. Major Axis

major axis = 4
√︀

𝜆major

getMinorAxisFeatureValue()
13. Minor Axis

minor axis = 4
√︀
𝜆minor

getLeastAxisFeatureValue()
14. Least Axis

least axis = 4
√︀
𝜆least

getElongationFeatureValue()
15. Elongation

Elongation is calculated using its implementation in SimpleITK, and is defined as:

elongation =

√︃
𝜆minor

𝜆major

Here, 𝜆major and 𝜆minor are the lengths of the largest and second largest principal component axes. The
values range between 1 (where the cross section through the first and second largest principal moments is
circle-like (non-elongated)) and 0 (where the object is a single point or 1 dimensional line).

getFlatnessFeatureValue()
16. Flatness

Flatness is calculated using its implementation in SimpleITK, and is defined as:

flatness =

√︃
𝜆least

𝜆major

Here, 𝜆major and 𝜆least are the lengths of the largest and smallest principal component axes. The values
range between 1 (non-flat, sphere-like) and 0 (a flat object).

Gray Level Co-occurrence Matrix (GLCM) Features

class radiomics.glcm.RadiomicsGLCM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Co-occurrence Matrix (GLCM) of size 𝑁𝑔 × 𝑁𝑔 describes the second-order joint probability
function of an image region constrained by the mask and is defined as P(𝑖, 𝑗|𝛿, 𝛼). The (𝑖, 𝑗)th element of this
matrix represents the number of times the combination of levels 𝑖 and 𝑗 occur in two pixels in the image, that
are separated by a distance of 𝛿 pixels along angle 𝛼. The distance 𝛿 from the center voxel is defined as the

30 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

distance according to the infinity norm. For 𝛿 = 1, this results in 2 neighbors for each of 13 angles in 3D
(26-connectivity) and for 𝛿 = 2 a 98-connectivity (49 unique angles).

Note that pyradiomics by default computes symmetrical GLCM!

As a two dimensional example, let the following matrix I represent a 5x5 image, having 5 discrete grey levels:

I =

⎡⎢⎢⎢⎢⎣
1 2 5 2 3
3 2 1 3 1
1 3 5 5 2
1 1 1 1 2
1 2 4 3 5

⎤⎥⎥⎥⎥⎦
For distance 𝛿 = 1 (considering pixels with a distance of 1 pixel from each other) and angle 𝛼 = 0∘ (horizontal
plane, i.e. voxels to the left and right of the center voxel), the following symmetrical GLCM is obtained:

P =

⎡⎢⎢⎢⎢⎣
6 4 3 0 0
4 0 2 1 3
3 2 0 1 2
0 1 1 0 0
0 3 2 0 2

⎤⎥⎥⎥⎥⎦
Let:

•𝜖 be an arbitrarily small positive number (≈ 2.2 × 10−16)

•P(𝑖, 𝑗) be the co-occurence matrix for an arbitrary 𝛿 and 𝛼

•𝑝(𝑖, 𝑗) be the normalized co-occurence matrix and equal to P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

•𝑁𝑔 be the number of discrete intensity levels in the image

•𝑝𝑥(𝑖) =
∑︀𝑁𝑔

𝑗=1 𝑃 (𝑖, 𝑗) be the marginal row probabilities

•𝑝𝑦(𝑗) =
∑︀𝑁𝑔

𝑖=1 𝑃 (𝑖, 𝑗) be the marginal column probabilities

•𝜇𝑥 be the mean gray level intensity of 𝑝𝑥 and defined as 𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

•𝜇𝑦 be the mean gray level intensity of 𝑝𝑦 and defined as 𝜇𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗

•𝜎𝑥 be the standard deviation of 𝑝𝑥

•𝜎𝑦 be the standard deviation of 𝑝𝑦

•𝑝𝑥+𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where 𝑖 + 𝑗 = 𝑘, and 𝑘 = 2, 3, . . . , 2𝑁𝑔

•𝑝𝑥−𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where |𝑖− 𝑗| = 𝑘, and 𝑘 = 0, 1, . . . , 𝑁𝑔 − 1

•𝐻𝑋 = −
∑︀𝑁𝑔

𝑖=1 𝑝𝑥(𝑖) log2

(︀
𝑝𝑥(𝑖) + 𝜖

)︀
be the entropy of 𝑝𝑥

•𝐻𝑌 = −
∑︀𝑁𝑔

𝑗=1 𝑝𝑦(𝑗) log2

(︀
𝑝𝑦(𝑗) + 𝜖

)︀
be the entropy of 𝑝𝑦

•𝐻𝑋𝑌 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
be the entropy of 𝑝(𝑖, 𝑗)

•𝐻𝑋𝑌 1 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀
•𝐻𝑋𝑌 2 = −

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀

1.4. Radiomic Features 31

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of
these values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W
and then summed and normalised. Features are then calculated on the resultant matrix. Weighting factor W is
calculated for the distance between neighbouring voxels by:

𝑊 = 𝑒−‖𝑑‖2

, where d is the distance for the associated angle according to the norm specified in setting ‘weight-
ingNorm’.

The following class specific settings are possible:

•symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two direc-
tions per angle, which results in a symmetrical matrix, with equal distributions for 𝑖 and 𝑗. A symmetrical
matrix corresponds to the GLCM as defined by Haralick et al.

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:

–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and option ‘no_weighting’ is used.

References

•Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification; IEEE Transactions on
Systems, Man and Cybernetics; 1973(3), p610-621

•https://en.wikipedia.org/wiki/Co-occurrence_matrix

•http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm

getAutocorrelationFeatureValue()
1. Autocorrelation

autocorrelation =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖𝑗

Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.

getAverageIntensityFeatureValue()
2. Joint Average

𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

Returns the mean gray level intensity of the 𝑖 distribution.

Warning: As this formula represents the average of the distribution of 𝑖, it is independent from
the distribution of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where 𝑝𝑥(𝑖) =
𝑝𝑦(𝑗), where 𝑖 = 𝑗.

32 Chapter 1. Table of Contents

https://en.wikipedia.org/wiki/Co-occurrence_matrix
http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getClusterProminenceFeatureValue()
3. Cluster Prominence

cluster prominence =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀4
𝑝(𝑖, 𝑗)

Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies
more asymmetry about the mean while a lower value indicates a peak near the mean value and less variation
about the mean.

getClusterShadeFeatureValue()
4. Cluster Shade

cluster shade =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀3
𝑝(𝑖, 𝑗)

Cluster Shade is a measure of the skewness and uniformity of the GLCM. A higher cluster shade implies
greater asymmetry about the mean.

getClusterTendencyFeatureValue()
5. Cluster Tendency

cluster tendency =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀2
𝑝(𝑖, 𝑗)

Cluster Tendency is a measure of groupings of voxels with similar gray-level values.

getContrastFeatureValue()
6. Contrast

contrast =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝑗)2𝑝(𝑖, 𝑗)

Contrast is a measure of the local intensity variation, favoring values away from the diagonal (𝑖 = 𝑗). A
larger value correlates with a greater disparity in intensity values among neighboring voxels.

getCorrelationFeatureValue()
7. Correlation

correlation =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝑥(𝑖)𝜇𝑦(𝑗)

𝜎𝑥(𝑖)𝜎𝑦(𝑗)

Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear dependency
of gray level values to their respective voxels in the GLCM.

Note: When there is only 1 discreet gray value in the ROI (flat region), 𝜎𝑥 and 𝜎𝑦 will be 0. In this case,
an arbitrary value of 1 is returned instead. This is assessed on a per-angle basis.

getDifferenceAverageFeatureValue()
8. Difference Average

difference average =

𝑁𝑔−1∑︁
𝑘=0

𝑘𝑝𝑥−𝑦(𝑘)

Difference Average measures the relationship between occurrences of pairs with similar intensity values
and occurrences of pairs with differing intensity values.

1.4. Radiomic Features 33

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getDifferenceEntropyFeatureValue()
9. Difference Entropy

difference entropy =

𝑁𝑔−1∑︁
𝑘=0

𝑝𝑥−𝑦(𝑘) log2

(︀
𝑝𝑥−𝑦(𝑘) + 𝜖

)︀
Difference Entropy is a measure of the randomness/variability in neighborhood intensity value differences.

getDifferenceVarianceFeatureValue()
10. Difference Variance

difference variance =

𝑁𝑔−1∑︁
𝑘=0

(1 −𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

Difference Variance is a measure of heterogeneity that places higher weights on differing intensity level
pairs that deviate more from the mean.

getDissimilarityFeatureValue()
11. Dissimilarity

dissimilarity =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

|𝑖− 𝑗|𝑝(𝑖, 𝑗)

Dissimilarity is a measure of local intensity variation defined as the mean absolute difference between the
neighbouring pairs. A larger value correlates with a greater disparity in intensity values among neighboring
voxels.

getEnergyFeatureValue()
12. Joint Energy

energy =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑝(𝑖, 𝑗)

)︀2
Energy (or Angular Second Moment)is a measure of homogeneous patterns in the image. A greater Energy
implies that there are more instances of intensity value pairs in the image that neighbor each other at higher
frequencies.

getEntropyFeatureValue()
13. Joint Entropy

entropy = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
Entropy is a measure of the randomness/variability in neighborhood intensity values.

getHomogeneity1FeatureValue()
14. Homogeneity 1

homogeneity 1 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|

Homogeneity 1 is a measure of the similarity in intensity values for neighboring voxels. It is a measure of
local homogeneity that increases with less contrast in the window.

34 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getHomogeneity2FeatureValue()
15. Homogeneity 2

homogeneity 2 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

Homogeneity 2 is a measure of the similarity in intensity values for neighboring voxels.

getImc1FeatureValue()
16. Informal Measure of Correlation (IMC) 1

IMC 1 =
𝐻𝑋𝑌 −𝐻𝑋𝑌 1

max{𝐻𝑋,𝐻𝑌 }

Note: In the case where both HX and HY are 0 (as is the case in a flat region), an arbitrary value of 0 is
returned to prevent a division by 0. This is done on a per-angle basis

getImc2FeatureValue()
17. Informal Measure of Correlation (IMC) 2

IMC 2 =
√︀

1 − 𝑒−2(𝐻𝑋𝑌 2−𝐻𝑋𝑌)

Note: In the case where HXY = HXY2, an arbitrary value of 0 is returned to prevent returning complex
numbers. This is done on a per-angle basis.

getIdmFeatureValue()
18. Inverse Difference Moment (IDM)

IDM =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

IDM (inverse difference moment) is a measure of the local homogeneity of an image. IDM weights are
the inverse of the Contrast weights (decreasing exponentially from the diagonal i=j in the GLCM).

getIdmnFeatureValue()
19. Inverse Difference Moment Normalized (IDMN)

IDMN =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|2
𝑁2

𝑔

)︁
IDMN (inverse difference moment normalized) is a measure of the local homogeneity of an image. IDMN
weights are the inverse of the Contrast weights (decreasing exponentially from the diagonal 𝑖 = 𝑗 in
the GLCM). Unlike Homogeneity2, IDMN normalizes the square of the difference between neighboring
intensity values by dividing over the square of the total number of discrete intensity values.

getIdFeatureValue()
20. Inverse Difference (ID)

ID =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|

ID (inverse difference) is another measure of the local homogeneity of an image. With more uniform gray
levels, the denominator will remain low, resulting in a higher overall value.

1.4. Radiomic Features 35

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getIdnFeatureValue()
21. Inverse Difference Normalized (IDN)

IDN =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|
𝑁𝑔

)︁
IDN (inverse difference normalized) is another measure of the local homogeneity of an image. Unlike
Homogeneity1, IDN normalizes the difference between the neighboring intensity values by dividing over
the total number of discrete intensity values.

getInverseVarianceFeatureValue()
22. Inverse Variance

inverse variance =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

|𝑖− 𝑗|2
, 𝑖 ̸= 𝑗

getMaximumProbabilityFeatureValue()
23. Maximum Probability

maximum probability = max
(︀
𝑝(𝑖, 𝑗)

)︀
Maximum Probability is occurrences of the most predominant pair of neighboring intensity values.

getSumAverageFeatureValue()
24. Sum Average

sum average =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘)𝑘

Sum Average measures the relationship between occurrences of pairs with lower intensity values and
occurrences of pairs with higher intensity values.

getSumEntropyFeatureValue()
25. Sum Entropy

sum entropy =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘) log2

(︀
𝑝𝑥+𝑦(𝑘) + 𝜖

)︀
Sum Entropy is a sum of neighborhood intensity value differences.

getSumVarianceFeatureValue()
26. Sum Variance

sum variance =

2𝑁𝑔∑︁
𝑘=2

(𝑘 − 𝑆𝐴)2𝑝𝑥+𝑦(𝑘)

Sum Variance is a measure of heterogeneity that places higher weights on neighboring intensity level pairs
that deviate more from the mean.

getSumSquaresFeatureValue()
27. Sum of Squares

sum squares =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝜇𝑥)2𝑝(𝑖, 𝑗)

Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs about the
mean intensity level in the GLCM.

36 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Warning: This formula represents the variance of the distribution of 𝑖 and is independent from
the distribution of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where 𝑝𝑥(𝑖) =
𝑝𝑦(𝑗), where 𝑖 = 𝑗

Gray Level Size Zone Matrix (GLSZM) Features

class radiomics.glszm.RadiomicsGLSZM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as a
the number of connected voxels that share the same gray level intensity. A voxel is considered connected if
the distance is 1 according to the infinity norm (26-connected region in a 3D, 8-connected region in 2D). In a
gray level size zone matrix 𝑃 (𝑖, 𝑗) the (𝑖, 𝑗)th element equals the number of zones with gray level 𝑖 and size 𝑗
appear in image. Contrary to GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix
calculated for all directions in the ROI.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLSZM then becomes:

P =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

•P(𝑖, 𝑗) be the size zone matrix

•𝑝(𝑖, 𝑗) be the normalized size zone matrix, defined as 𝑝(𝑖, 𝑗) = P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

•𝑁𝑔 be the number of discreet intensity values in the image

•𝑁𝑠 be the number of discreet zone sizes in the image

•𝑁𝑝 be the number of voxels in the image

Note: The mathematical formulas that define the GLSZM features correspond to the definitions of features
extracted from the GLRLM.

References

•Guillaume Thibault; Bernard Fertil; Claire Navarro; Sandrine Pereira; Pierre Cau; Nicolas Levy; Jean
Sequeira; Jean-Luc Mari (2009). “Texture Indexes and Gray Level Size Zone Matrix. Application to Cell
Nuclei Classification”. Pattern Recognition and Information Processing (PRIP): 140-145.

•https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix

1.4. Radiomic Features 37

https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getSmallAreaEmphasisFeatureValue()
1. Small Area Emphasis (SAE)

SAE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)
𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

SAE is a measure of the distribution of small size zones, with a greater value indicative of more smaller
size zones and more fine textures.

getLargeAreaEmphasisFeatureValue()
2. Large Area Emphasis (LAE)

LAE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

LAE is a measure of the distribution of large area size zones, with a greater value indicative of more larger
size zones and more coarse textures.

getGrayLevelNonUniformityFeatureValue()
3. Gray Level Non-Uniformity (GLN)

GLN =

∑︀𝑁𝑔

𝑖=1

(︁∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

GLN measures the variability of gray-level intensity values in the image, with a lower value indicating
more homogeneity in intensity values.

getGrayLevelNonUniformityNormalizedFeatureValue()
4. Gray Level Non-Uniformity Normalized (GLNN)

GLNN =

∑︀𝑁𝑔

𝑖=1

(︁∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑑

𝑗=1 P(𝑖, 𝑗)
2

GLNN measures the variability of gray-level intensity values in the image, with a lower value indicating a
greater similarity in intensity values. This is the normalized version of the GLN formula.

getSizeZoneNonUniformityFeatureValue()
5. Size-Zone Non-Uniformity (SZN)

SZN =

∑︀𝑁𝑠

𝑗=1

(︁∑︀𝑁𝑔

𝑖=1 P(𝑖, 𝑗)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

SZN measures the variability of size zone volumes in the image, with a lower value indicating more
homogeneity in size zone volumes.

getSizeZoneNonUniformityNormalizedFeatureValue()
6. Size-Zone Non-Uniformity Normalized (SZNN)

SZNN =

∑︀𝑁𝑠

𝑗=1

(︁∑︀𝑁𝑔

𝑖=1 P(𝑖, 𝑗)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑑

𝑗=1 P(𝑖, 𝑗)
2

SZNN measures the variability of size zone volumes throughout the image, with a lower value indicating
more homogeneity among zone size volumes in the image. This is the normalized version of the SZN
formula.

38 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getZonePercentageFeatureValue()
7. Zone Percentage (ZP)

ZP =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

P(𝑖, 𝑗)

𝑁𝑝

ZP measures the coarseness of the texture by taking the ratio of number of zones and number of voxels in
the ROI.

Values are in range 1
𝑁𝑝

≤ 𝑍𝑃 ≤ 1, with higher values indicating a larger portion of the ROI consists of
small zones (indicates a more fine texture).

getGrayLevelVarianceFeatureValue()
8. Gray Level Variance (GLV)

GLV =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑖− 𝜇)2

Here, 𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

GLV measures the variance in gray level intensities for the zones.

getZoneVarianceFeatureValue()
9. Zone Variance (ZV)

ZV =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

Here, 𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗

ZV measures the variance in zone size volumes for the zones.

getZoneEntropyFeatureValue()
10. Zone Entropy (ZE)

ZE = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

ZE measures the uncertainty/randomness in the distribution of zone sizes and gray levels. A higher value
indicates more heterogeneneity in the texture patterns.

getLowGrayLevelZoneEmphasisFeatureValue()
11. Low Gray Level Zone Emphasis (LGLZE)

LGLZE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

LGLZE measures the distribution of lower gray-level size zones, with a higher value indicating a greater
proportion of lower gray-level values and size zones in the image.

1.4. Radiomic Features 39

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getHighGrayLevelZoneEmphasisFeatureValue()
12. High Gray Level Zone Emphasis (HGLZE)

HGLZE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

HGLZE measures the distribution of the higher gray-level values, with a higher value indicating a greater
proportion of higher gray-level values and size zones in the image.

getSmallAreaLowGrayLevelEmphasisFeatureValue()
13. Small Area Low Gray Level Emphasis (SALGLE)

SALGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

SALGLE measures the proportion in the image of the joint distribution of smaller size zones with lower
gray-level values.

getSmallAreaHighGrayLevelEmphasisFeatureValue()
14. Small Area High Gray Level Emphasis (SAHGLE)

SAHGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)𝑖2

𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with higher
gray-level values.

getLargeAreaLowGrayLevelEmphasisFeatureValue()
15. Large Area Low Gray Level Emphasis (LALGLE)

LALGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)𝑗2

𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

LALGLE measures the proportion in the image of the joint distribution of larger size zones with lower
gray-level values.

getLargeAreaHighGrayLevelEmphasisFeatureValue()
16. Large Area High Gray Level Emphasis (LAHGLE)

LAHGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1 P(𝑖, 𝑗)

LAHGLE measures the proportion in the image of the joint distribution of larger size zones with higher
gray-level values.

Gray Level Run Length Matrix (GLRLM) Features

class radiomics.glrlm.RadiomicsGLRLM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number
of pixels, of consecutive pixels that have the same gray level value. In a gray level run length matrix P(𝑖, 𝑗|𝜃),
the (𝑖, 𝑗)th element describes the number of runs with gray level 𝑖 and length 𝑗 occur in the image (ROI) along
angle 𝜃.

40 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLRLM for 𝜃 = 0, where 0 degrees is the horizontal direction, then becomes:

P =

⎡⎢⎢⎢⎢⎣
1 0 1 0 0
3 0 1 0 0
4 1 1 0 0
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

•P(𝑖, 𝑗|𝜃) be the run length matrix for an arbitrary direction 𝜃

•𝑝(𝑖, 𝑗|𝜃) be the normalized run length matrix, defined as 𝑝(𝑖, 𝑗|𝜃) = P(𝑖,𝑗|𝜃)∑︀
P(𝑖,𝑗|𝜃)

•𝑁𝑔 be the number of discreet intensity values in the image

•𝑁𝑟 be the number of discreet run lengths in the image

•𝑁𝑝 be the number of voxels in the image

By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean
of these values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between
neighbouring voxels and then summed and normalised. Features are then calculated on the resultant matrix. The
distance between neighbouring voxels is calculated for each angle using the norm specified in ‘weightingNorm’.

The following class specific settings are possible:

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:

–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and option ‘no_weighting’ is used.

References

•Galloway MM. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Pro-
cessing, 4(2):172-179.

•Chu A., Sehgal C.M., Greenleaf J. F. 1990. Use of gray value distribution of run length for texture analysis.
Pattern Recognition Letters, 11(6):415-419

•Xu D., Kurani A., Furst J., Raicu D. 2004. Run-Length Encoding For Volumetric Texture. International
Conference on Visualization, Imaging and Image Processing (VIIP), p. 452-458

•Tang X. 1998. Texture information in run-length matrices. IEEE Transactions on Image Processing
7(11):1602-1609.

•Tustison N., Gee J. Run-Length Matrices For Texture Analysis. Insight Journal 2008 January - June.

1.4. Radiomic Features 41

http://www.insight-journal.org/browse/publication/231

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getShortRunEmphasisFeatureValue()
1. Short Run Emphasis (SRE)

SRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1
P(𝑖,𝑗|𝜃)

𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

SRE is a measure of the distribution of short run lengths, with a greater value indicative of shorter run
lengths and more fine textural textures.

getLongRunEmphasisFeatureValue()
2. Long Run Emphasis (LRE)

LRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

LRE is a measure of the distribution of long run lengths, with a greater value indicative of longer run
lengths and more coarse structural textures.

getGrayLevelNonUniformityFeatureValue()
3. Gray Level Non-Uniformity (GLN)

GLN =

∑︀𝑁𝑔

𝑖=1

(︁∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

GLN measures the similarity of gray-level intensity values in the image, where a lower GLN value corre-
lates with a greater similarity in intensity values.

getGrayLevelNonUniformityNormalizedFeatureValue()
4. Gray Level Non-Uniformity Normalized (GLNN)

GLNN =

∑︀𝑁𝑔

𝑖=1

(︁∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)
2

GLNN measures the similarity of gray-level intensity values in the image, where a lower GLNN value
correlates with a greater similarity in intensity values. This is the normalized version of the GLN formula.

getRunLengthNonUniformityFeatureValue()
5. Run Length Non-Uniformity (RLN)

RLN =

∑︀𝑁𝑟

𝑗=1

(︁∑︀𝑁𝑔

𝑖=1 P(𝑖, 𝑗|𝜃)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

RLN measures the similarity of run lengths throughout the image, with a lower value indicating more
homogeneity among run lengths in the image.

getRunLengthNonUniformityNormalizedFeatureValue()
6. Run Length Non-Uniformity Normalized (RLNN)

RLNN =

∑︀𝑁𝑟

𝑗=1

(︁∑︀𝑁𝑔

𝑖=1 P(𝑖, 𝑗|𝜃)
)︁2

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

RLNN measures the similarity of run lengths throughout the image, with a lower value indicating more
homogeneity among run lengths in the image. This is the normalized version of the RLN formula.

42 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getRunPercentageFeatureValue()
7. Run Percentage (RP)

RP =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

P(𝑖, 𝑗|𝜃)

𝑁𝑝

RP measures the coarseness of the texture by taking the ratio of number of runs and number of voxels in
the ROI.

Values are in range 1
𝑁𝑝

≤ 𝑅𝑃 ≤ 1, with higher values indicating a larger portion of the ROI consists of
short runs (indicates a more fine texture).

getGrayLevelVarianceFeatureValue()
8. Gray Level Variance (GLV)

GLV =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑖− 𝜇)2

Here, 𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑖

GLV measures the variance in gray level intensity for the runs.

getRunVarianceFeatureValue()
9. Run Variance (RV)

RV =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2

Here, 𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑗

RV is a measure of the variance in runs for the run lengths.

getRunEntropyFeatureValue()
10. Run Entropy (RE)

RE = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃) log2(𝑝(𝑖, 𝑗|𝜃) + 𝜖)

Here, 𝜖 is an arbitrarily small positive number (≈ 2.2 × 10−16).

RE measures the uncertainty/randomness in the distribution of run lengths and gray levels. A higher value
indicates more heterogeneity in the texture patterns.

getLowGrayLevelRunEmphasisFeatureValue()
11. Low Gray Level Run Emphasis (LGLRE)

LGLRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1
P(𝑖,𝑗|𝜃)

𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

LGLRE measures the distribution of low gray-level values, with a higher value indicating a greater con-
centration of low gray-level values in the image.

1.4. Radiomic Features 43

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getHighGrayLevelRunEmphasisFeatureValue()
12. High Gray Level Run Emphasis (HGLRE)

HGLRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

HGLRE measures the distribution of the higher gray-level values, with a higher value indicating a greater
concentration of high gray-level values in the image.

getShortRunLowGrayLevelEmphasisFeatureValue()
13. Short Run Low Gray Level Emphasis (SRLGLE)

SRLGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1
P(𝑖,𝑗|𝜃)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

SRLGLE measures the joint distribution of shorter run lengths with lower gray-level values.

getShortRunHighGrayLevelEmphasisFeatureValue()
14. Short Run High Gray Level Emphasis (SRHGLE)

SRHGLE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1
P(𝑖,𝑗|𝜃)𝑖2

𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

SRHGLE measures the joint distribution of shorter run lengths with higher gray-level values.

getLongRunLowGrayLevelEmphasisFeatureValue()
15. Long Run Low Gray Level Emphasis (LRLGLE)

LRLGLRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1
P(𝑖,𝑗|𝜃)𝑗2

𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

LRLGLRE measures the joint distribution of long run lengths with lower gray-level values.

getLongRunHighGrayLevelEmphasisFeatureValue()
16. Long Run High Gray Level Emphasis (LRHGLE)

LRHGLRE =

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟

𝑗=1 P(𝑖, 𝑗|𝜃)

LRHGLRE measures the joint distribution of long run lengths with higher gray-level values.

Developers

This section contains information on how to add or customize the feature classes and filters available in PyRa-
diomics. PyRadiomics enumerates the available feature classes and input image types at initialization of the toolbox.
These are available from the global radiomics namespace by use of the functions getFeatureClasses() and
getInputImageTypes(), respectively. Individual features in a feature class are enumerated at initialization of
the class. See also the contributing guidelines

Signature of a feature class

Each feature class is defined in a separate module, the module name is used as the feature class name (e.g. if module
tex.py matches the feature class signature, it is available in the PyRadiomics toolbox as the ‘tex’ feature class). In the
module a class should be defined that fits the following signature:

44 Chapter 1. Table of Contents

https://github.com/Radiomics/pyradiomics/blob/master/CONTRIBUTING.md

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

[required imports]
from radiomics import base

class Radiomics[Name](base.RadiomicsFeaturesBase):
"""
Feature class docstring
"""

def __init__(self, inputImage, inputMask, **kwargs):
super(Radiomics[Name], self).__init__(inputImage, inputMask, **kwargs)
Feature class specific init

def get[Feature]FeatureValue(self):
"""
Feature docstring
"""
value = feature calculation using member variables of RadiomicsFeatureBase

→˓and this class.
return [value]

• At the top should be the import statements for packages required by the feature class. Unused import statements
should be removed (flake8 will fail if unused import statements are encountered, or import statements are not
structured as defined by appnexus).

• The class name should be ‘Radiomics’ followed by the name of the class (usually similar to the module name.
However, this name is not used elsewhere and may be named arbitrarily).

• The class should inherit (directly or indirectly) from base.RadiomicsFeaturesBase, which is an abstract
class defining the common interface for the feature classes

• Additional initialization steps should be called in the __init__ function. For default variables initialized, see
Feature Class Base.

• Documentation is required! Both at the class level (Feature class docstring) and at the level of the individual
features (Feature docstring).

• If the feature class uses C extensions for matrix calculation enhancement, which should be tested using
test_cmatrices, matrix calculation should be implemented as follows:

– The function calculating the matrix in python should be defined in a function called
_calculateMatrix.

– The function calculating the matrix using the C extension should be defined in a function called
_calculateCMatrix.

– The functions to calculate the matrix accept no additional input arguments other than the self argument,
and return the fully processed matrix as a numpy array.

– The fully processed matrix should be assigned to a variable in the feature class named P_[Name], where
[Name] is identical to the feature class name (module name) (e.g. in feature class glcm, matrix is stored
in variable P_glcm

• A feature class specific logger is created by the base class, which will be a child logger (i.e. the ‘radiomics.tex’
logger in case of the feature class ‘tex’). It is exposed in the feature class as self.logger. Any log messages
generated by the feature class should make use of this logger to ensure that the hierarchy of classes is correctly
reflected in generated logs (i.e. self.logger.debug('message') to generate a debug log message).

1.5. Developers 45

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Signature of individual features

Each individual feature is defined as a function in the feature class with the get[Name]FeatureValue(self)
signature, where [Name] is the feature name (unique on the feature class level). It accepts no input arguments, and
should return a scalar value. The self argument represents the instantiated feature class that defines the function,
and identifies the feature function as non-static.

Signature of a filter

All filters are defined in the imageoperations module, and identified by the signature
get[Name]Image(inputImage, **kwargs). Here, [Name] represents the unique name for the im-
age type, which is also used to identify the filter during extraction. The input of a filter is fixed and consists of the
inputImage, a SimpleITK Image object of the original image and **kwargs, which are the customized setting
that should be used for the extraction of features from the derived image.

One or more derived images are returned using the ‘yield’ statement: yield derivedImage,
inputImageName, kwargs. Here, derivedImage is one SimpleITK image object representing the filtered
imag e, inputImageName is a unique string identifying features calculated using this filter in the output and
kwargs are the customized settings for the extraction (**kwargs passed as input, without the double asterisk).
Multiple derived images can be returned by multiple yield statements, or yield statements inside a loop. Please note
that only one derived image should be returned on each call to yield and that inputImageName is a unique name
for each returned derived image. Derived images must have the same dimensions and occupy the same physical space
to ensure compatibility with the mask.

Progress Reporting

When operating in full-python mode, the calculation of the texture matrices can take some time. Therefor PyRadiomics
provides the possibility to report the progress for calculation of GLCM and GLSZM. This is only enabled in full-
python mode when the verbosity (setVerbosity()) is set to INFO or DEBUG. By default, none is provided and
no progress of matrix calculation will be reported.

To enable progress reporting, the radiomics.progressReporter variable should be set to a class object (NOT
an instance), which fits the following signature:

1. Accepts an iterable as the first positional argument and a keyword argument (‘desc’) specifying a label to display

2. Can be used in a ‘with’ statement (i.e. exposes a __enter__ and __exit__ function)

3. Is iterable (i.e. at least specifies an __iter__ function, which iterates over the iterable passed at initialization)

It is also possible to create your own progress reporter. To achieve this, additionally specify a function __next__,
and have the __iter__ function return self. The __next__ function takes no arguments and returns a call
to the __next__ function of the iterable (i.e. return self.iterable.__next__()). Any prints/progress
reporting calls can then be inserted in this function prior to the return statement.

In radiomics__init__.py a dummy progress reporter (_DummyProgressReporter) is defined, which
is used when calculating in full-python mode, but progress reporting is not enabled (verbosity > INFO) or the
progressReporter variable is not set.

To design a custom progress reporter, the following code can be adapted and used as progressReporter:

class MyProgressReporter(object):
def __init__(self, iterable, desc=''):

self.desc = desc # A description is which describes the progress that is
→˓reported

self.iterable = iterable # Iterable is required

46 Chapter 1. Table of Contents

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

This function identifies the class as iterable and should return an object
→˓which exposes

the __next__ function that should be used to iterate over the object
def __iter__(self):

return self # return self to 'intercept' the calls to __next__ to insert
→˓reporting code.

def __next__(self):
nextElement = self.iterable.__next__()
Insert custom progress reporting code here. This is called for every

→˓iteration in the loop
(once for each unique gray level in the ROI for GLCM and GLSZM)

By inserting after the call `self.iterable.__next__()` the function will
→˓exit before the

custom code is run when the stopIteration error is raised.
return nextElement

This function is called when the 'with' statement is entered
def __enter__(self):

print (self.desc) # Print out the description upon start of the loop
return self # The __enter__ function should return itself

This function is called when the 'with' statement is exited
def __exit__(self, exc_type, exc_value, tb):

pass # If nothing needs to be closed or handled, so just specify 'pass'

Addtional points for attention

Code style

To keep the PyRadiomics code consistent and as readable as possible, some style rules are enforced. These are part
of the continuous testing and implemented using flake8. See also the .flake8 configuration file in the root of the
repository. To aid in keeping a consistent code style, a .editorconfig file is provided in the root of the folder.

Module names should be lowercase, without underscores or spaces. Class names, function names and variables should
be declared using camelcase, with uppercase first letter for class names and lowercase first letter otherwise. Private
helper functions (which should not be included in the documentation) should be declared using a ‘_’ prefix. This is
consistent with the python style for marking them as ‘private’, and will automatically exclude them from the generated
documentation.

Documentation

The documentation of PyRadiomics is auto-generated from static files contained in the docs folder and the docstrings
of the Python code files. When a new feature class is added, this has to be added to the static file (features.rst)
describing the feature classes as well. If done so, sphinx will take care of the rest. A featureclass can be added as
follows:

<Class Name> Features

.. automodule:: radiomics.<module name>
:members:
:undoc-members:

1.5. Developers 47

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

:show-inheritance:
:member-order: bysource

Documentation providing information of the feature class as a whole (e.g. how the feature matrix is calculated) should
be provided in the docstring of the class. Definition of individual features, including the mathematical formulas should
be provided in the docstrings of the feature functions. A docstring of the module is not required.

The presence of a docstring at the class level and at the level of each individual feature is required and checked during
testing. Missing docstrings will cause the test to fail.

Testing

To ensure consistency in the extraction provided by PyRadiomics, continuous testing is used to test the PyRadiomics
source code after each commit. These tests are defined in the test folder and used to run tests for the following
environments:

• Python 2.7 32 and 64 bits (Windows, Linux and Mac)

• Python 3.4 32 and 64 bits (Windows and Linux)

• Python 3.5 32 and 64 bits (Windows and Linux)

Note: Python 3 testing for mac is currently disabled for Mac due to some issues with the SimpleITK package for
python 3.

There are 3 testing scripts run for PyRadiomics. The first test is test_cmatrices, which asserts if the matrices
calculated by the C extensions match those calculated by Python. A threshold of 1e-3 is used to allow for machine
precision errors. The second test is test_docstrings, which asserts if there is missing documentation as de-
scribed above. The final and most important test is test_features, which compares the features calculated by
PyRadiomics against a known baseline using 5 test cases. These test cases and the baseline are stored in the data
folder of the repository. This ensures that changes to the code do not silently change the calculated values of the
features.

To add a new feature class to the baseline, run the addClassToBaseline.py script, contained in the bin folder.
This script detects if there are feature classes in PyRadiomics, for which there is no baseline available. If any are
found, a new baseline if calculated for these classes in the full-python mode and added to the baseline files. These new
baseline files then needed to be included in the repository and committed.

Frequently Asked Questions

Installation

During setup, python is unable to compile the C extensions.

This can occur when no compiler is available for python. If you’re installing on Windows, you can find free compilers
for python here.

Error loading C extensions.

I installed PyRadiomics successfully from the repository, but when I run the notebook, I get Error loading C
extensions, switching to python calculation

48 Chapter 1. Table of Contents

https://wiki.python.org/moin/WindowsCompilers

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

When PyRadiomics is installed, the C extensions are compiled and copied to the installation folder, by default the
site-packages folder. However, when the notebook is run form the repository, it is possible that PyRadiomics
uses the source code directly (i.e. runs in development mode). You can check this by checking the radiomics.
__path__ field, which will be something like ['radiomics'] when it is running in development mode and
['path/to/python/Lib/site-packages'] when running from the installed folder. If running in develop-
ment mode, the C extensions are not available by default. To make them available in development mode, run python
setup.py develop from the commandline, which is similar to the install command, but installs pyradiomics
to the source folder instead (i.e. does nothing to the python files, but compiles the C extensions and copies them to the
source folder).

Which python versions is PyRadiomics compatible with?

PyRadiomics is compatible with both python 2 and python 3. The automated testing uses python versions 2.7, 3.4 and
3.5 (both 32 and 64 bits). Python < 2.6 is not supported. Other python versions may be compatible with PyRadiomics,
but this is not actively tested and therefore not guaranteed to work.

Input / Customization

I want to customize my extraction. How do I do that?

See also Customizing the Extraction. PyRadiomics can be customized in various ways, but it’s most easy to do this by
providing a parameter file. In this yaml structured text file you can define your custom settings and which features and
input image types to enable.

Error loading parameter file

When I try to load my own parameter file, I get error:”CoreError: Unable to load any data from source yaml file”

This error is thrown by PyKwalify when it is unable to read the parameter file. The most common cause is when the
file is indented using tabs, which throws a “token (‘t’) not recognized error”. Instead, ensure that all indentations are
made using 2 or 4 spaces.

What file types are supported by PyRadiomics for input image and mask?

PyRadiomics uses SimpleITK for image loading and handling. Therefore, all image types supported by SimpleITK
can be used as input for PyRadiomics. Please note that only one file location can be provided for image/mask. If you
want to provide the image in DICOM format, load the DICOM images using SimpleITK functionality and pass the
resultant image object instead.

Geometry mismatch between image and mask

My mask was generated using a another image than my input image, can I still extract features?

For various reasons, both image and mask must have the same geometry (i.e. same spacing, size, direction and origin)
when passed the feature classes. To this end PyRadiomics includes checks in the pipeline to ensure this is the case.
For more information on the mask checks, see checkMask(). If the geometry error is small difference in origin,
spacing or direction, you can increase the tolerance by setting geometryTolerance. If the error is large, or the
dimensions do not match, you could also resample the mask to image space. An example of this is provided in
bin\resampleMask.py and can be enabled in PyRadiomics by setting correctMask to True, which will only
perform this correction in case of a geometery mismatch where the mask contains a valid ROI (i.e. the mask contains
the label value which does not include areas outside image physical bounds).

1.6. Frequently Asked Questions 49

http://yaml.org/

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

What modalities does PyRadiomics support?

PyRadiomics is not developed for one specific modality. Multiple modalities can be processed by PyRadiomics,
although the optimal settings may differ between modalities. There are some constraints on the input however:

1. Gray scale volume: PyRadiomics currently does not provide extraction from color images or images with com-
plex values

2. 3D or slice: Although PyRadiomics supports single slice (2D) feature extraction, the input is still required to
have 3 dimensions (where in case of 2D, a dimension may be of size 1).

Can I use DICOM-RT struct for the input mask?

PyRadiomics does not support DICOM-RT struct as input directly. We recommend to convert these using for example
SlicerRT. We are working on providing support for DICOM-RT in the Slicer extension, but this is not thoroughly
tested yet.

Usage

How should the input file for pyradiomicsbatch be structured?

Currently, the input file for pyradiomicsbatch is a csv file specifying the combinations of images and masks for
which to extract features. It must contain a header line, where at least header “Image” and “Mask” should be specified
(capital sensitive). These identify the columns that contain the file location of the image and the mask, respectively.
Each subsequent line represents one combination of an image and a mask. Additional columns are also allowed, these
are copied to the output in the same order as the input, with the additional columns of the calculated features appended
at the end. N.B. All header names should be unique and not match any of the produced header names by pyradiomics.

Radiomics module not found in jupyter notebook

I installed PyRadiomics, but when I run the jupyter notebook, I get ImportError: No module named
radiomics

This can have two possible causes: 1) When installing PyRadiomics from the repository, your python path variable will
be updated to enable python to find the package. However, this value is only updated in commandline windows when
they are restarted. If your jupyter notebook was running during installation, you first need to restart it. 2) Multiple
versions of python can be installed on your machine simultaneously. Ensure PyRadiomics is installed on the same
version you are using in your Jupyter notebook.

I’m missing features from my output. How can I see what went wrong?

If calculation of features or application of filters fails, a warning is logged. If you want to know exactly what happens
inside the toolbox, PyRadiomics provides extensive debug logging. You can enable this to be printed to the out, or
stored in a separate log file. The output is regulated by radiomics.setVerbosity() and the PyRadiomics
logger can be accessed via radiomics.logger. See also here and the examples included in the repository on how
to set up logging.

I’m able to extract features, but many are NaN, 0 or 1. What happend?

It is possible that the segmentation was too small to extract a valid texture. Check the value of VoxelNum, which
is part of the additional information in the output. This is the number of voxels in the ROI after pre processing and
therefore the number of voxels that are used for feature calculation.

50 Chapter 1. Table of Contents

http://slicerrt.github.io/
https://github.com/Radiomics/SlicerRadiomics

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Another problem can be that you have to many or too few gray values after discretization. You can check this by
comparing the range of gray values in the ROI (a First Order feature) with the value for your binWidth parameter.
More bins capture smaller differences in gray values, but too many bins (compared to number of voxels) will yield low
probabilities in the texture matrices, resulting in non-informative features. There is no definitive answer for the ideal
number of discretized gray values, and this may differ between modalities. One study1 assessed the number of bins in
PET and found that in the range of 16 - 128 bins, texture features did not differ significantly.

Does PyRadiomics support voxel-wise feature extraction?

No, currently PyRadiomics only supports lesion-based feature extraction. However, voxel-based feature extraction
may be a good addition in the future. If you have thoughts or ideas on how to implement this, we’d welcome your
input on the pyradiomics email list.

Miscellaneous

A new version of PyRadiomics is available! Where can I find out what changed?

When a new version is released, a changelog is included in the release statement. Between releases, changes are not
explicitly documented, but all significant changes are implemented using pull requests. Check the merged pull request
for the latest changes.

I have some ideas for PyRadiomics. How can I contribute?

We welcome suggestions and contributions to PyRadiomics. Check our guidelines to see how you can contribute to
PyRadiomics. Signatures and code styles used in PyRadiomics are documented in the Developers section.

I found a bug! Where do I report it?

We strive to keep PyRadiomics as bug free as possible by thoroughly testing new additions before including them in
the stable version. However, nothing is perfect, and some bugs may therefore exist. Report yours by opening an issue
on the GitHub or contact us at the pyradiomics email list. If you want to help in fixing it, we’d welcome you to open
up a pull request with your suggested fix.

My question is not listed here...

If you have a question that is not listed here, check the pyradiomics email list or the issues on GitHub. Feel free to
post a new question or issue and we’ll try to get back to you ASAP.

Release Notes

Next Release

PyRadiomics 1.2.0

1 Tixier F, Cheze-Le Rest C, Hatt M, Albarghach NM, Pradier O, Metges J-P, et al. Intratumor Heterogeneity Characterized by Textural Features
on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011;52:369–78.

1.7. Release Notes 51

https://groups.google.com/forum/#!forum/pyradiomics
https://github.com/Radiomics/pyradiomics/releases
https://github.com/Radiomics/pyradiomics/pulls?utf8=%E2%9C%93&q=is%3Apr%20is%3Amerged
https://github.com/Radiomics/pyradiomics/blob/master/CONTRIBUTING.md
https://github.com/Radiomics/pyradiomics/issues
https://groups.google.com/forum/#!forum/pyradiomics
https://github.com/Radiomics/pyradiomics/pulls
https://groups.google.com/forum/#!forum/pyradiomics
https://github.com/Radiomics/pyradiomics/issues

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Feature Calculation Changes

• Remove feature SumVariance, rename SumVariance2 to SumVariance. SumVariance reflected the formula as
is defined in the paper by Haralick et al1. However, the variance is calculated by subtracting the entropy as
opposed to subtracting the average, most likely due to a typo(‘f8’ instead of ‘f6’). SumVariance2 reflected the
formula where the average is subtracted and is retrained as the only SumVariance. (#233)

• Redefine features Elongation and Flatness as the inverse of the original definition. This prevents a returned
value of NaN when the shape is completely flat. (#234)

• In certain edge cases, the calculated maximum diameters may be too small when calculating using the python
implementation. This is corrected by the C extension and a warning is now logged when calculating these
features in python. N.B. As of this change, maximum diameter is not available for calculation in full-
python mode (#257)

• For certain formulas, a NaN value is returned in some edge cases. Catch this and return a predefined value
instead. Document this behaviour in the docstrings of the features affected. (#248)

New Features

• Add Region of Interest checks. (#223, #227)

• Add variable column support for batch input file (#228)

• Add Docker support (#236)

Bug fixes

• Instantiate output with input in commandlinebatch

• Correct Np when weighting is applied in GLRLM (#229)

• Update CSV generators to reflect variable number of columns for input CSV in batch processing (#246)

• Return corrected mask when it had to be resampled due to geometry mismatch errors (#260)

Requirements

• Remove tqdm requirement (#232)

• Reorganize requirements, with requirements only needed during development moved to
requirements-dev.txt (#231)

Documentation

version 1.2.0 docs

• Update feature docstrings, making them more easily adaptable for article supplements (#233)

• Add FAQ concerning the cmatrices lib path (#233)

• Add developer install step to documentation (#245)

• Remove use of sudo (#233)

• Fix subclass name in feature class signature (section “Developers”)

1 Haralick R, Shanmugan K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern 1973:610–621.

52 Chapter 1. Table of Contents

https://github.com/Radiomics/pyradiomics/pull/233
https://github.com/Radiomics/pyradiomics/pull/234
https://github.com/Radiomics/pyradiomics/pull/257
https://github.com/Radiomics/pyradiomics/pull/248
https://github.com/Radiomics/pyradiomics/pull/223
https://github.com/Radiomics/pyradiomics/pull/227
https://github.com/Radiomics/pyradiomics/pull/228
https://github.com/Radiomics/pyradiomics/pull/236
https://github.com/Radiomics/pyradiomics/pull/229
https://github.com/Radiomics/pyradiomics/pull/246
https://github.com/Radiomics/pyradiomics/pull/260
https://github.com/Radiomics/pyradiomics/pull/232
https://github.com/Radiomics/pyradiomics/pull/231
http://pyradiomics.readthedocs.io/en/1.2.0
https://github.com/Radiomics/pyradiomics/pull/233
https://github.com/Radiomics/pyradiomics/pull/233
https://github.com/Radiomics/pyradiomics/pull/245
https://github.com/Radiomics/pyradiomics/pull/233

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

• Add subsection on customizing the extraction to the “Usage” section (#252)

• Remove SimpleITK installation workaround, this is no longer needed (#249)

• Add a changelog to keep track of changes and integrate this into the auto generated documentation (#255)

Examples

• Add pandas example, showing how to process PyRadiomics output/input using the pandas library (#228)

Internal API

• Add function to get or download test case (#235)

• Rewrite C Extension algorithm for GSLZM. Instead of searching over the image for the next voxel when growing
a region, store all unprocessed voxels in a stack. This yields a significant increase in performance, especially in
large ROIs. Requires slightly more memory (1 array, type integer, size equal to number of voxels in the ROI)
(#255)

• Implement C extension for calculation of maximum diameters. (#255)

Cleanups

• Restructure repository (#254)

– Move jupyter notebooks to separate root folder (root/notebooks)

– Move example script to separate root folder (root/examples), with example settings in separate sub-
folder (root/examples/exampleSettings)

– bin folder now only contains support scripts for the core code (i.e. generators for input files for batch
processing and scripts to generate new baselines or to resample a mask to the image geometry)

PyRadiomics 1.1.1

Feature Calculation Changes

• Correct error in formula for Compactness1. N.B. Baseline updated! (#218)

• Remove feature Roundness, as this feature is identical to feature Sphericity, but uses different implementation
for surface area calculation (all implemented in SimpleITK) (#218)

• Change handling of cases where max(X) mod binwidth = 0 during image discretization. These used to
be assigned to topmost bin, but this produces unexpected behaviour (i.e. in range 1, 2, 3, 4, 5 with binwidth 1,
value 5 would be discretized to 4 in stead of 5). Value now assigned is topmost bin + 1 (in concordance with
default behavior of numpy.digitize) (#219)

• Change default value for voxelArrayShift (from 2000 to 0), this is to prevent unknowingly using a too
large shift when not necessary. Document effect of this parameter in the first order formulas affected. (#219)

New features

• Add forced 2D extraction (as alternative to resampling for handling anisotropy in voxels spacing)

• Enable specification of distances between neighbors for GLCM matrix calculation

1.7. Release Notes 53

https://github.com/Radiomics/pyradiomics/pull/252
https://github.com/Radiomics/pyradiomics/pull/249
https://github.com/Radiomics/pyradiomics/pull/255
https://github.com/Radiomics/pyradiomics/pull/228
https://github.com/Radiomics/pyradiomics/pull/235
https://github.com/Radiomics/pyradiomics/pull/255
https://github.com/Radiomics/pyradiomics/pull/255
https://github.com/Radiomics/pyradiomics/pull/254
https://github.com/Radiomics/pyradiomics/pull/218
https://github.com/Radiomics/pyradiomics/pull/218
https://github.com/Radiomics/pyradiomics/pull/219
https://github.com/Radiomics/pyradiomics/pull/219

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

(#215)

New Parameters

• force2D, Boolean default False. Set to True to force a by slice texture calculation. Dimension that iden-
tifies the ‘slice’ can be defined in force2Ddimension. If input ROI is already a 2D ROI, features are
automatically extracted in 2D.

• force2Ddimension, int, range 0-2, default 0. Specifies the ‘slice’ dimension for a by-slice feature extrac-
tion. Value 0 identifies the ‘z’ dimension (axial plane feature extraction), and features will be extracted from the
xy plane. Similarly, 1 identifies the y dimension (coronal plane) and 2 the x dimension (saggital plane).

• distances, List of integers, default [1]. This specifies the distances between the center voxel and the
neighbor, for which angles should be generated.

(#215)

Bug fixes

• Add some missing python 3 compatibility lines to the supporting script addClassToBaseline and com-
mand line script pyradiomicsbatch (#210, #214)

• Fix bug when loading image as file path and mask as SimpleITK object. (#211)

• Change location of parameter schema files. These files are otherwise not included in the wheel distribution.
(#221)

Requirements

• Add sphinx_rtd_theme to requirements (needed to build documentation). (#222)

Documentation

version 1.1.1 docs

• Split package documentation into “Pipeline Modules” (all non-feature-class modules) and “Feature Definitions”
(feature class modules)

• Add developers section with documentation on how to implement new filters, feature and feature classes.

• Add FAQ section with some trouble shooting tips

• Rename some GLSZM features, this is to make them more consistent with GLRLM features, which are similar,
but calculated on a different matrix

• Add documentation for Elongation and Flatness

• Document mathematical correlation between various Shape features.

(#216)

Internal API

• Update logging with more extensive debug logging and more informative info log messages. (#220)

54 Chapter 1. Table of Contents

https://github.com/Radiomics/pyradiomics/pull/215
https://github.com/Radiomics/pyradiomics/pull/215
https://github.com/Radiomics/pyradiomics/pull/210
https://github.com/Radiomics/pyradiomics/pull/214
https://github.com/Radiomics/pyradiomics/pull/211
https://github.com/Radiomics/pyradiomics/pull/221
https://github.com/Radiomics/pyradiomics/pull/222
http://pyradiomics.readthedocs.io/en/1.1.1
https://github.com/Radiomics/pyradiomics/pull/216
https://github.com/Radiomics/pyradiomics/pull/220

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

• Replace parameter verbose with output printing implemented in logging. Control verbosity level to output
(stderr) by calling setVerbosity(), where level determines the verbosity level (as defined in python log-
ging). This prints out the requested levels of the log messaging, where process reports with parameter verbose
are now classified as INFO-level messages (i.e. specify INFO or DEBUG to enable these). N.B. parameter
verbose is not longer supported and will throw an error if passed in the parameter file (#220)

• Add feature class and input image type checks in featureextractor when changing these settings. (#213)

• Remove usage of eval (replaced by implementations of getattr), this is a more secure approach. (#216)

• Define default settings in featureextractor in a separate function. This is to ensure consistency in applied default
settings, as well as make them easily available outside of featureextractor (#216)

• Update reference for citing PyRadiomics (#224)

Cleanups

• Remove unused variable (self.provenance_on in featureextractor, this value is now replaced by
a customizable setting)

PyRadiomics 1.1.0

New features

• Image normalization. This feature enables the normalization of image intensity values prior to feeding them to
the extraction pipeline (i.e. before any other preprocessing steps are performed). Normalization is based on the
all gray values contained within the image, not just those defined by the ROI in the mask.

• C Extensions for texture matrix and surface area calculation. These extensions enhance performance of texture
matrix calculation associated GLCM, GLRLM and GLSZM features and of surface area calculation. Below
shows the decrease in computation time for the 5 test cases included in PyRadiomics. (#158, #200, #202)

– GLCM 6913 ms -> 3 ms

– GLRLM 1850 ms -> 10 ms

– GLSZM 12064 ms -> 58 ms

– Surface Area 3241 ms -> 1 ms

New Parameters

• additionalInfo Boolean, default True. Enables additional information in the output if set to True.
(#190)

• enableCExtensions Boolean, defailt True. Enables enhanced performance for texture matrix calculation
using C extensions if set to True. (#202)

• normalize Boolean, default ‘‘ False‘‘. If set to true, normalizes image before feeding it into the extraction
pipeline. (#209)

• normalizeScale Float, > 0, default 1. Enables scaling of normalized intensities by specified value. (#209)

• removeOutliers Float, > 0, default None. If set, outliers (defined by the value specified) are removed by
setting them to the outlier value. Outlier value is defined on the non-scaled values. (#209)

1.7. Release Notes 55

https://github.com/Radiomics/pyradiomics/pull/220
https://github.com/Radiomics/pyradiomics/pull/213
https://github.com/Radiomics/pyradiomics/pull/216
https://github.com/Radiomics/pyradiomics/pull/216
https://github.com/Radiomics/pyradiomics/pull/224
https://github.com/Radiomics/pyradiomics/pull/158
https://github.com/Radiomics/pyradiomics/pull/200
https://github.com/Radiomics/pyradiomics/pull/202
https://github.com/Radiomics/pyradiomics/pull/190
https://github.com/Radiomics/pyradiomics/pull/202
https://github.com/Radiomics/pyradiomics/pull/209
https://github.com/Radiomics/pyradiomics/pull/209
https://github.com/Radiomics/pyradiomics/pull/209

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Bug fixes

• Unlink venv only when needed in Circle CI testing (#199)

• Fix datatype error when calling SimpleITK.ResampleImageFilter.SetSize() (only causes error in
python 3, #205)

Requirements

• Add requirement for six>=1.10.0, needed to make PyRadiomics compatible with both python 2 and 3.

Documentation

version 1.1.0 docs

• Documentation on installation and usage is upgraded, with the addition of an embedded instruction video (in
section “Usage”, cued at the section on usage examples). (#187)

• Updated contact information to point to the google groups.

• Updated the classifiers in the setup script to reflect the more advanced status of Pyradiomics. (#193)

Tests

• Add support for multiple python versions and platforms, now including python 2.7, 3.4, 3.5 (32/64bits) for
Linux, Windows and Mac. (#183, #191, #199)

• Testing output is upgraded to ensure unique feature names (#195, #197)

• Add test_cmatrices to assert conformity between output from Python and C based texture matrix calcu-
lation.

Internal API

• getFeatureClasses() and getInputImageTypes() are moved from Feature Extractor <radiomics-
featureextractor-label> to the global radiomics namespace. This enumerates the possible feature classes and
filters at initialization of the toolbox, and ensures feature classes are imported at initialization. (#190, #198)

• Python 3 Compatibility. Add support for compatibility with python 2.7 and python >= 3.4. This is achieved
using package six.

• Standardize function names for calculating matrices in python and with C extensions to _calculateMatrix
and _calculateCMatrix, respectively.

• Make C code consistent with C89 convention. All variables (pointers for python objects) are initialized at top
of each block.

• Optimize GLSZM calculation (C extension)

– Define temporary array for holding the calculated zones. During calculation, the matrix must be able to
store all possible zones, ranging from zone size 1 to total number of voxels (Ns), for each gray level (Ng).
In this case, the GLSZM would be initialized with size Ng * Ns, which is very memory intensive. Instead,
use a temporary array of size (Ns * 2) + 1, which stores all calculated zones in pairs of 2 elements: the
first element holds the gray level, the second the size of the calculated zone. The first element after the last
zone is set to -1 to serve as a stop sign for the second function, which translates the temporary array into
the final GLSZM, which can be directly initialized at optimum size.

56 Chapter 1. Table of Contents

https://github.com/Radiomics/pyradiomics/pull/199
https://github.com/Radiomics/pyradiomics/pull/205
http://pyradiomics.readthedocs.io/en/1.1.0
https://github.com/Radiomics/pyradiomics/pull/187
https://github.com/Radiomics/pyradiomics/pull/193
https://github.com/Radiomics/pyradiomics/pull/183
https://github.com/Radiomics/pyradiomics/pull/191
https://github.com/Radiomics/pyradiomics/pull/199
https://github.com/Radiomics/pyradiomics/pull/195
https://github.com/Radiomics/pyradiomics/pull/197
https://github.com/Radiomics/pyradiomics/pull/190
https://github.com/Radiomics/pyradiomics/pull/198

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

– Use calloc and free for the temporary array holding the calculated zones.

– Use char datatype for mask. (signed char in GLSZM).

– Uses while loops. This allows to reduce the memory usage. Additionally, we observed that with recursive
functions it was ‘unexpectedly’ failing.

– Optimized search that finds a new index to process in the region growing.

PyRadiomics 1.0.1

New features

• Added 2 commandline scripts (pyradiomics and pyradiomicsbatch), which enable feature extraction directly
from the commandline. For help on usage, run script with “-h” argument. (#188, #194, #196, #205)

Bug fixes

• Fix hardcoded label in shape (#175)

• Fix incorrect axis when deleting empty angles in GLCM (#176)

• Numpy slicing error in application of wavelet filters. This error caused the derived image to be erroneously
rotated and flipped, with misaligned mask as a result.(#182)

Requirements

• Revert numpy minimum requirement to 1.9.2. All operations in PyRadiomics are supported by this version,
and it is the version used by Slicer. By reverting the minimum required version, installing PyRadiomics in the
slicer extension does not cause an update of the numpy package distributed by slicer. (#180)

Documentation

version 1.0.1 docs

• Update on the documentation, reflecting recent changes in the code.

• Add developers and affiliations to ReadMe and documentation (#177)

• Added additional references and updated installation and usage section.

Internal API

• Different implementation of the various filters. No changes to calculation, but has a changed signature.

N.B. This results in inputImages to be differently defined (different capitalization, e.g. “orginal” should
now be “Original”). See documentation for definition of inputImages (featureextractor section).

PyRadiomics 1.0

New features

• Initial Release of PyRadiomics

1.7. Release Notes 57

https://github.com/Radiomics/pyradiomics/pull/188
https://github.com/Radiomics/pyradiomics/pull/194
https://github.com/Radiomics/pyradiomics/pull/196
https://github.com/Radiomics/pyradiomics/pull/205
https://github.com/Radiomics/pyradiomics/pull/175
https://github.com/Radiomics/pyradiomics/pull/176
https://github.com/Radiomics/pyradiomics/pull/182
https://github.com/Radiomics/pyradiomics/pull/180
http://pyradiomics.readthedocs.io/en/v1.0.1
https://github.com/Radiomics/pyradiomics/pull/177

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

Work in progress

• Full python calculation (C matrices branch not stable and reserved for later release)

Documentation

• Documentation published at readthedocs

58 Chapter 1. Table of Contents

http://pyradiomics.readthedocs.io/en/v1.0

CHAPTER 2

Feature Classes

Currently supports the following feature classes:

• First Order Statistics

• Shape-based

• Gray Level Cooccurence Matrix (GLCM)

• Gray Level Run Length Matrix (GLRLM)

• Gray Level Size Zone Matrix (GLSZM)

On average, Pyradiomics extracts ≈ 1300 features per image, which consist of the 16 shape descriptors and features
extracted from original and derived images (LoG with 5 sigma levels, 1 level of Wavelet decomposistions yielding 8
derived images and images derived using Square, Square Root, Logarithm and Exponential filters).

Detailed description on feature classes and individual features is provided in section Radiomic Features.

59

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

60 Chapter 2. Feature Classes

CHAPTER 3

Filter Classes

Aside from the feature classes, there are also some built-in optional filters:

• Laplacian of Gaussian (LoG, based on SimpleITK functionality)

• Wavelet (using the PyWavelets package)

• Square

• Square Root

• Logarithm

• Exponential

For more information, see also Image Processing and Filters.

61

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

62 Chapter 3. Filter Classes

CHAPTER 4

Supporting reproducible extraction

Aside from calculating features, the pyradiomics package includes additional information in the output. This infor-
mation contains information on used image and mask, as well as applied settings and filters, thereby enabling fully
reproducible feature extraction. For more information, see General Info Module.

63

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

64 Chapter 4. Supporting reproducible extraction

CHAPTER 5

3rd-party packages used in pyradiomics

• SimpleITK (Image loading and preprocessing)

• numpy (Feature calculation)

• PyWavelets (Wavelet filter)

• pykwalify (Enabling yaml parameters file checking)

• six (Python 3 Compatibility)

See also the requirements file.

65

https://github.com/Radiomics/pyradiomics/blob/master/requirements.txt

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

66 Chapter 5. 3rd-party packages used in pyradiomics

CHAPTER 6

Installation

PyRadiomics is OS independent and compatible with both Python 2.7 and Python >=3.4.

• Clone the repository

– git clone git://github.com/Radiomics/pyradiomics

• Install on your system (Linux, Mac OSX), with prerequisites:

– cd pyradiomics

– python -m pip install -r requirements.txt

– python setup.py install

• For more detailed installation instructions and installation on Windows see Installation Details

67

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

68 Chapter 6. Installation

CHAPTER 7

Pyradiomics Indices and Tables

• modindex

• genindex

• search

69

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

70 Chapter 7. Pyradiomics Indices and Tables

CHAPTER 8

License

This package is covered by the open source 3D Slicer License.

71

https://github.com/Radiomics/pyradiomics/blob/master/LICENSE.txt

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

72 Chapter 8. License

CHAPTER 9

Developers

• Joost van Griethuysen1,3,4

• Andriy Fedorov2

• Nicole Aucoin2

• Jean-Christophe Fillion-Robin5

• Ahmed Hosny1

• Steve Pieper6

• Hugo Aerts (PI)1,2

1Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, 2Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA 3Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands, 4GROW-School for On-
cology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, 5Kitware,
6Isomics

73

https://github.com/JoostJM
https://github.com/fedorov
https://github.com/naucoin
https://github.com/jcfr
https://github.com/ahmedhosny
https://github.com/pieper
https://github.com/hugoaerts

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

74 Chapter 9. Developers

CHAPTER 10

Contact

We are happy to help you with any questions. Please contact us on the pyradiomics email list.

We’d welcome your contributions to PyRadiomics. Please read the contributing guidelines on how to contribute to
PyRadiomics. Information on adding / customizing feature classes and filters can be found in the Developers section.

75

https://groups.google.com/forum/#!forum/pyradiomics
https://github.com/Radiomics/pyradiomics/blob/master/CONTRIBUTING.md

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

76 Chapter 10. Contact

Python Module Index

b
radiomics.base, 20

f
radiomics.featureextractor, 12
radiomics.firstorder, 23

g
radiomics.generalinfo, 19
radiomics.glcm, 30
radiomics.glrlm, 40
radiomics.glszm, 37

i
radiomics.imageoperations, 14

r
radiomics, 21

s
radiomics.shape, 27

77

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

78 Python Module Index

Index

A
addProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 12
applyThreshold() (in module ra-

diomics.imageoperations), 18

B
binImage() (in module radiomics.imageoperations), 15

C
calculateFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
21

checkMask() (in module radiomics.imageoperations), 16
cMatsEnabled() (in module radiomics), 21
computeFeatures() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 14
cropToTumorMask() (in module ra-

diomics.imageoperations), 17

D
disableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
21

disableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

disableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 12

E
enableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
21

enableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

enableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 12

enableCExtensions() (in module radiomics), 21
enableFeatureByName() (ra-

diomics.base.RadiomicsFeaturesBase method),
21

enableFeatureClassByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

enableFeaturesByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

enableInputImageByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 12

enableInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

execute() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 13

execute() (radiomics.generalinfo.GeneralInfo method),
19

G
GeneralInfo (class in radiomics.generalinfo), 19
generateAngles() (in module radiomics.imageoperations),

15
get10PercentileFeatureValue() (ra-

diomics.firstorder.RadiomicsFirstOrder
method), 24

get90PercentileFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getAutocorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
32

getAverageIntensityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
32

79

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getBinEdges() (in module radiomics.imageoperations),
14

getBoundingBoxValue() (ra-
diomics.generalinfo.GeneralInfo method),
19

getClusterProminenceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
32

getClusterShadeFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
33

getClusterTendencyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
33

getCompactness1FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
28

getCompactness2FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
28

getContrastFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
33

getCorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
33

getDifferenceAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
33

getDifferenceEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getDifferenceVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getDissimilarityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getElongationFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
30

getEnergyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getEnergyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getEntropyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getExponentialImage() (in module ra-

diomics.imageoperations), 19
getFeatureClasses() (in module radiomics), 22
getFeatureClassNames() (ra-

diomics.featureextractor.RadiomicsFeaturesExtractor
method), 14

getFeatureNames() (ra-
diomics.base.RadiomicsFeaturesBase class
method), 21

getFeatureNames() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 14

getFlatnessFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
30

getGeneralSettingsValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getGrayLevelNonUniformityFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
42

getGrayLevelNonUniformityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
38

getGrayLevelNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
42

getGrayLevelNonUniformityNormalizedFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
38

getGrayLevelVarianceFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
43

getGrayLevelVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
39

getHighGrayLevelRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
43

getHighGrayLevelZoneEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
39

getHomogeneity1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getHomogeneity2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
34

getIdFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 35

getIdmFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 35

getIdmnFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
35

80 Index

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

getIdnFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 36

getImageHashValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getImageSpacingValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getImc1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
35

getImc2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
35

getInputImagesValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getInputImageTypes() (in module radiomics), 22
getInterquartileRangeFeatureValue() (ra-

diomics.firstorder.RadiomicsFirstOrder
method), 25

getInverseVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getKurtosisFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 26

getLargeAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
38

getLargeAreaHighGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
40

getLargeAreaLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method), 40

getLeastAxisFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
30

getLogarithmImage() (in module ra-
diomics.imageoperations), 19

getLoGImage() (in module radiomics.imageoperations),
18

getLongRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
42

getLongRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 44

getLongRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 44

getLowGrayLevelRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
43

getLowGrayLevelZoneEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),

39
getMajorAxisFeatureValue() (ra-

diomics.shape.RadiomicsShape method),
30

getMaskHashValue() (radiomics.generalinfo.GeneralInfo
method), 20

getMaximum2DDiameterColumnFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
29

getMaximum2DDiameterRowFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
29

getMaximum2DDiameterSliceFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
29

getMaximum3DDiameterFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
29

getMaximumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getMaximumProbabilityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getMeanAbsoluteDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getMeanFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getMedianFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getMinimumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getMinorAxisFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
30

getOriginalImage() (in module ra-
diomics.imageoperations), 18

getProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 14

getRangeFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getRobustMeanAbsoluteDeviationFeatureValue()
(radiomics.firstorder.RadiomicsFirstOrder
method), 25

getRootMeanSquaredFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 25

getRunEntropyFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),

Index 81

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

43
getRunLengthNonUniformityFeatureValue() (ra-

diomics.glrlm.RadiomicsGLRLM method),
42

getRunLengthNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
42

getRunPercentageFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
42

getRunVarianceFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
43

getShortRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
41

getShortRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 44

getShortRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 44

getSizeZoneNonUniformityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
38

getSizeZoneNonUniformityNormalizedFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
38

getSkewnessFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 26

getSmallAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
37

getSmallAreaHighGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
40

getSmallAreaLowGrayLevelEmphasisFeatureValue()
(radiomics.glszm.RadiomicsGLSZM method),
40

getSphericalDisproportionFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
29

getSphericityFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
28

getSquareImage() (in module ra-
diomics.imageoperations), 19

getSquareRootImage() (in module ra-
diomics.imageoperations), 19

getStandardDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 26

getSumAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getSumEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getSumSquaresFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getSumVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
36

getSurfaceAreaFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
27

getSurfaceVolumeRatioFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
28

getTestCase() (in module radiomics), 22
getTotalEnergyFeatureValue() (ra-

diomics.firstorder.RadiomicsFirstOrder
method), 24

getUniformityFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 27

getVarianceFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 27

getVersionValue() (radiomics.generalinfo.GeneralInfo
method), 20

getVolumeFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
27

getVolumeNumValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getVoxelNumValue() (radiomics.generalinfo.GeneralInfo
method), 20

getWaveletImage() (in module ra-
diomics.imageoperations), 18

getZoneEntropyFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
39

getZonePercentageFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
38

getZoneVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
39

L
loadImage() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 14
loadParams() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 12

82 Index

pyradiomics Documentation, Release 1.1.1.post99+g737ac26

N
normalizeImage() (in module ra-

diomics.imageoperations), 17

R
radiomics (module), 21
radiomics.base (module), 20
radiomics.featureextractor (module), 12
radiomics.firstorder (module), 23
radiomics.generalinfo (module), 19
radiomics.glcm (module), 30
radiomics.glrlm (module), 40
radiomics.glszm (module), 37
radiomics.imageoperations (module), 14
radiomics.shape (module), 27
RadiomicsFeaturesBase (class in radiomics.base), 20
RadiomicsFeaturesExtractor (class in ra-

diomics.featureextractor), 12
RadiomicsFirstOrder (class in radiomics.firstorder), 23
RadiomicsGLCM (class in radiomics.glcm), 30
RadiomicsGLRLM (class in radiomics.glrlm), 40
RadiomicsGLSZM (class in radiomics.glszm), 37
RadiomicsShape (class in radiomics.shape), 27
resampleImage() (in module radiomics.imageoperations),

17

S
setVerbosity() (in module radiomics), 22

Index 83

	Table of Contents
	Installation
	Usage
	Pipeline Modules
	Radiomic Features
	Developers
	Frequently Asked Questions
	Release Notes

	Feature Classes
	Filter Classes
	Supporting reproducible extraction
	3rd-party packages used in pyradiomics
	Installation
	Pyradiomics Indices and Tables
	License
	Developers
	Contact
	Python Module Index

