

    
      
          
            
  
Welcome to pyradiomics documentation!

This is an open-source python package for the extraction of Radiomics features from medical imaging.
With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained
open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness
of radiomic capabilities and expand the community. The platform supports both the feature extraction in 2D and 3D and
can be used to calculate single values per feature for a region of interest (“segment-based”) or to generate feature
maps (“voxel-based”).

If you publish any work which uses this package, please cite the following publication:
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillon-Robin, J. C., Pieper, S.,  Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Research, 77(21), e104–e107. `https://doi.org/10.1158/0008-5472.CAN-17-0339 <https://doi.org/10.1158/0008-5472.CAN-17-0339>`_


Note

This work was supported in part by the US National Cancer Institute grant
5U24CA194354, QUANTITATIVE RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.




Warning

Not intended for clinical use.




Join the Community!

Join the PyRadiomics community on google groups here [https://groups.google.com/forum/#!forum/pyradiomics].



Table of Contents






	Installation
	1. Install via pip

	2. Install via conda

	3. Install from source

	3. Use 3D Slicer Radiomics extension

	4. Use pyradiomics Docker

	Setting up Docker





	Usage
	Instruction Video

	Example

	Voxel-based extraction

	Command Line Use

	Interactive Use

	PyRadiomics in 3D Slicer

	Setting Up Logging





	Customizing the Extraction
	Types of Customization

	Parameter File





	Pipeline Modules
	Feature Extractor

	Image Processing and Filters

	General Info Module

	Feature Class Base

	Global Toolbox Functions





	Radiomic Features
	First Order Features

	Shape Features (3D)

	Shape Features (2D)

	Gray Level Co-occurrence Matrix (GLCM) Features

	Gray Level Size Zone Matrix (GLSZM) Features

	Gray Level Run Length Matrix (GLRLM) Features

	Neighbouring Gray Tone Difference Matrix (NGTDM) Features

	Gray Level Dependence Matrix (GLDM) Features





	Excluded Radiomic Features
	Excluded GLCM Features

	Excluded GLDM Features





	Contributing to pyradiomics
	The PR Process, Circle CI, and Related Gotchas

	Submitting a parameter file





	Developers
	Signature of a feature class

	Adding the baseline

	Signature of individual features

	Signature of an image type

	Progress Reporting

	Using feature classes directly

	Addtional points for attention





	pyradiomics labs
	pyradiomics-dcm





	FAQs
	Feature Extraction: Input, Customization and Reproducibility

	Common Errors

	Building PyRadiomics from source

	Miscellaneous





	Release Notes
	Next Release

	PyRadiomics 3.0.1

	PyRadiomics 3.0

	PyRadiomics 2.2.0

	PyRadiomics 2.1.2

	PyRadiomics 2.1.1

	PyRadiomics 2.1.0

	PyRadiomics 2.0.1

	PyRadiomics 2.0.0

	PyRadiomics 1.3.0

	PyRadiomics 1.2.0

	PyRadiomics 1.1.1

	PyRadiomics 1.1.0

	PyRadiomics 1.0.1

	PyRadiomics 1.0











Feature Classes

Currently supports the following feature classes:


	First Order Statistics


	Shape-based (3D)


	Shape-based (2D)


	Gray Level Cooccurence Matrix (GLCM)


	Gray Level Run Length Matrix (GLRLM)


	Gray Level Size Zone Matrix (GLSZM)


	Neigbouring Gray Tone Difference Matrix (NGTDM)


	Gray Level Dependence Matrix (GLDM)




On average, Pyradiomics extracts \(\approx 1500\) features per image, which consist of the 16 shape descriptors and
features extracted from original and derived images (LoG with 5 sigma levels, 1 level of Wavelet decomposistions
yielding 8 derived images and images derived using Square, Square Root, Logarithm and Exponential filters).

Detailed description on feature classes and individual features is provided in section Radiomic Features.



Filter Classes

Aside from the feature classes, there are also some built-in optional filters:


	Laplacian of Gaussian (LoG, based on SimpleITK functionality)


	Wavelet (using the PyWavelets package)


	Square


	Square Root


	Logarithm


	Exponential


	Gradient


	Local Binary Pattern (2D)


	Local Binary Pattern (3D)




For more information, see also Image Processing and Filters.



Supporting reproducible extraction

Aside from calculating features, the pyradiomics package includes additional information in the
output. This information contains information on used image and mask, as well as applied settings
and filters, thereby enabling fully reproducible feature extraction. For more information, see
General Info Module.



3rd-party packages used in pyradiomics


	SimpleITK (Image loading and preprocessing)


	numpy (Feature calculation)


	PyWavelets (Wavelet filter)


	pykwalify (Enabling yaml parameters file checking)


	six (Python 3 Compatibility)




See also the requirements file [https://github.com/Radiomics/pyradiomics/blob/master/requirements.txt].



Installation

PyRadiomics is OS independent and compatible with and Python >=3.5. Pre-built binaries are available on
PyPi and Conda. To install PyRadiomics, ensure you have python
installed and run:


	python -m pip install pyradiomics




For more detailed installation instructions and building from source,
see Installation section.



Pyradiomics Indices and Tables


	Module Index


	Index


	Search Page






License

This package is covered by the open source 3-clause BSD License [https://github.com/Radiomics/pyradiomics/blob/master/LICENSE.txt].



Developers



	Joost van Griethuysen [https://github.com/JoostJM]1,3,4


	Andriy Fedorov [https://github.com/fedorov]2


	Nicole Aucoin [https://github.com/naucoin]2


	Jean-Christophe Fillion-Robin [https://github.com/jcfr]5


	Ahmed Hosny [https://github.com/ahmedhosny]1


	Steve Pieper [https://github.com/pieper]6


	Hugo Aerts (PI) [https://github.com/hugoaerts]1,2







1Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,
2Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
3Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands,
4GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands,
5Kitware,
6Isomics



Contact

We are happy to help you with any questions. Please contact us on the Radiomics community section of the 3D Slicer Discourse [https://discourse.slicer.org/c/community/radiomics/23].

We’d welcome your contributions to PyRadiomics. Please read the
contributing guidelines on how to contribute to PyRadiomics. Information on
adding / customizing feature classes and filters can be found in the Developers section.





          

      

      

    

  

    
      
          
            
  
Installation

There are three ways you can use pyradiomics:
1. Install via pip
2. Install from source
3. Use 3D Slicer Radiomics extension
4. Use pyradiomics Docker


1. Install via pip

Pre-built binaries are available on PyPi for installation via pip. For the python versions
mentioned below, wheels are automatically generated for each release of PyRadiomics, allowing you to
install pyradiomics without having to compile anything. For other python versions, a source distribution
is also available, but this requires compiling the C extensions.


	Ensure that you have python installed on your machine, version 3.5, 3.6 or 3.7 (64-bits).


	Install PyRadiomics:

python -m pip install pyradiomics











2. Install via conda

Besides pre-built binaries for PyPi, PyRadiomics is also available on conda cloud.
To install PyRadiomics on Conda, run:

conda install -c radiomics pyradiomics







3. Install from source

PyRadiomics can also be installed from source code. This allows for the bleeding edge version, but does
require you to have a compiler set up for python, as PyRadiomics comes with C extensions for the calculation
of texture matrices and some shape features.


	Ensure you have the version control system git installed on your machine.


	Ensure that you have python installed on your machine, at least version 3.5 (64-bits).


	Clone the repository:

git clone git://github.com/Radiomics/pyradiomics







	For unix like systems (MacOSX, linux):

cd pyradiomics
python -m pip install -r requirements.txt
python setup.py install






	To use your build for interactive use and development:

python setup.py build_ext --inplace







	If you don’t have sudo/admin rights on your machine, you need to locally install numpy, nose, tqdm, PyWavelets, SimpleITK (specified in requirements.txt).
In a bash shell:

pip install --user --upgrade pip
export PATH=$HOME/.local/bin:$PATH
pip install --user -r requirements.txt
export PYTHONPATH=$HOME/.local/lib64/python2.7/site-packages











	For Windows:

cd pyradiomics
python -m pip install -r requirements.txt
python setup.py install







	If the installation fails, check out the Frequently Asked Questions. If your error is not listed there,
contact us by creating an issue [https://github.com/Radiomics/pyradiomics/issues/new] on the PyRadiomics
Github.






3. Use 3D Slicer Radiomics extension

3D Slicer is a free open source research platform for medical image computing. Learn more and download 3D Slicer binary for your platform here: http://slicer.org.

Once installed, you can use 3D Slicer ExtensionManager to install Radiomics extension, which provides a graphical user interface to the pyradiomics library. The advantage of
using pyradiomics from 3D Slicer is that you can view images and segmentations, you can import existing segmentations and confirm their quality, or you can use the variety
of tools in 3D Slicer to automate your segmentation tasks.

More detailed instructions about installing 3D Slicer Radiomics extension are available here: https://github.com/Radiomics/SlicerRadiomics



4. Use pyradiomics Docker

This approach may be preferred if you are interested in using pyradiomics from the command line, but have difficulties installing the library on your system.

First, you will need to install Docker on your system, if it is not installed already. You can follow the instructions below to do this.

Once Docker is installed, you can issue docker pull radiomics/pyradiomics:CLI command in the shell to download the pyradiomics Docker image.
After that you can invoke pyradiomics tool as follows:

docker run radiomics/pyradiomics:CLI --help





Docker containers cannot directly access the filesystem of the host. In order to pass files as arguments to pyradiomics and to access files that converters create,
an extra step is required to specify which directories will be used for file exchange using the -v argument:

-v <HOST_DIR>:<CONTAINER_DIR>





The argument above will make the HOST_DIR path available within the container at CONTAINER_DIR location. The files that will be read or written by the
converter run from the docker container should be referred to via the CONTAINER_DIR path.



Setting up Docker

Docker (http://docker.com) is a project that automates deployment of applications inside software containers. Docker
application is defined by _images_ that contain all of the components and steps needed to initialize the application instance. A _container_ is a running instance of the image. We provide an image that contains the compiled pyradiomics library in the docker/pyradiomics:CLI image. By using pyradiomics Docker container you can use pyradiomics on any operating system that supports Docker without having to compile pyradiomics. All you need to do is install Docker on your system, and download the pyradiomics Docker image.

You will first need to install Docker on your system following these instructions [https://www.docker.com/products/overview]. Docker is available for Mac, Windows and Linux. For the most part Docker installation is straightforward, but some extra steps need to be taken on Windows as discussed below.

If you use Docker on Windows …

Note the system requirements [https://docs.docker.com/docker-for-windows/]:


	you will need to have Windows 10 Pro or above


	you will need to enable Hyper-V package (Docker will prompt you)


	you will need to enable virtualization; read this [https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled] to learn how to check if it is enabled, and if it is not - here is one guide [https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-Virtualization-Troubleshooting-Enabling_Intel_VT_and_AMD_V_virtualization_hardware_extensions_in_BIOS.html] that may help you do that, but it assumes you can access your BIOS settings




IMPORTANT: You will also need to share the drive you will be using to communicate data to and from Docker image in Docker Settings as shown in the screenshot below.

Most likely you will experience the display of an error message similar to the one shown below:

C:\Program Files\Docker\Docker\Resources\bin\docker.exe: Error response from daemon:
C: drive is not shared. Please share it in Docker for Windows Settings.
See 'C:\Program Files\Docker\Docker\Resources\bin\docker.exe run --help'.





If you have this error, make sure that the drive, where the HOST_DIR is located, is shared:


	right click onto the Docker task bar icon and choose “Settings”


	choose “Shared Drives” from the left menu (a list of drives that are available to share will be displayed)


	select the drive for your HOST_DIR to be shared


	confirm with Apply and continue




[image: _images/docker-windows.jpg]




          

      

      

    

  

    
      
          
            
  
Usage


Instruction Video
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Customizing the Extraction


Types of Customization

There are 4 ways in which the feature extraction can be customized in PyRadiomics:


	Specifying which image types (original/derived) to use to extract features from


	Specifying which feature(class) to extract


	Specifying settings, which control the pre processing and customize the behaviour of enabled filters and feature
classes.


	Specifying the voxel-based specific settings, which are only needed when using PyRadiomics to generate feature maps





Warning

At initialization of the feature extractor or an individual feature class, settings can be provided as keyword
arguments in **kwargs. These consist only of type 3 parameters (setting). Parameters of type 1 (image type)
and 2 (feature class) can only provided at initialization when using the parameter file. When the parameter file is
not used, or when these parameters have to be changed after initialization, use the respective function calls.




Image Types

These are the image types (either the original image or derived images using filters) that can be used to extract
features from. The image types that are available are determined dynamically (all are functions in
imageoperations.py that fit the signature of an image type).

The enabled types are stored in the _enabledImageTypes dictionary in the feature extractor class instance and can be
changed using the functions enableAllImageTypes(),
disableAllImageTypes(),
enableImageTypeByName() and
enableImageTypes(). Moreover, custom settings can be
provided for each enabled image type, which will then only be applied during feature extraction for that image type.
Please note that this will only work for settings that are applied at or after any filter is applied (i.e. not at the
feature extractor level).


Note

This type of customization can be included in the Parameter File using key imageType.




Note

By default, only the “Original” image type is enabled.



Currently available image types are:


	Original: No filter applied


	Wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying either
a High or a Low pass filter in each of the three dimensions.
See also getWaveletImage()


	LoG: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change, where sigma
defines how coarse the emphasised texture should be. A low sigma emphasis on fine textures (change over a
short distance), where a high sigma value emphasises coarse textures (gray level change over a large distance).
See also getLoGImage()


	Square: Takes the square of the image intensities and linearly scales them back to the original range.
Negative values in the original image will be made negative again after application of filter.


	SquareRoot: Takes the square root of the absolute image intensities and scales them back to original range.
Negative values in the original image will be made negative again after application of filter.


	Logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
negative original values are made negative again after application of filter.


	Exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
scaled to original range and negative original values are made negative again after application of filter.


	Gradient: Returns the magnitude of the local gradient. See also getGradientImage()


	LocalBinaryPattern2D: Computes the Local Binary Pattern in a by-slice operation (2D).
See also getLBP2DImage()


	LocalBinaryPattern3D: Computes the Local Binary Pattern in 3D using spherical harmonics.
See also getLBP3DImage()






Enabled Features

These are the features that are extracted from each (original and/or derived) image type. The available features are
determined dynamically, and are ordered in feature classes. For more information on the signature used to identify
features and feature classes, see the Developers section.

The enable features are stored in the _enabledFeatures dictionary in the feature extractor class instance and can be
changed using the functions enableAllFeatures(),
disableAllFeatures(),
enableFeatureClassByName() and
enableFeaturesByName(). Each key-value pair in the
dictionary represents one enabled feature class with the feature class name as the key and a list of enabled feature
names as value. If the value is None or an empty list, all features in that class are enabled. Otherwise only the
features specified.


Note

This type of customization can be included in the Parameter File using key featureClass.




Note

By default, all feature classes and all features are enabled.



Currently available feature classes are:


	firstorder


	shape


	glcm


	glrlm


	glszm


	gldm


	ngtdm




An individual feature can be enabled by submitting the feature name as defined in the unique part of the function
signature (e.g. the First Order feature defined by get10PercentileFeatureValue() is enabled by specifying
{firstorder: ['10Percentile']}). Function signatures for all features are available in the
Radiomic Features section.



Settings

Besides customizing what to extract (image types, features), PyRadiomics exposes various settings customizing how the
features are extracted. These settings operate at different levels. E.g. resampling is done just after the images are
loaded (in the feature extractor), so settings controlling the resampling operate only on the feature extractor level.
Settings are stored in the setttings dictionary in the feature extractor class instance, where the key is the case
sensitive setting name. Custom settings are provided as keyword arguments at initialization of the feature extractor
(with the setting name as keyword and value as the argument value, e.g. binWidth=25), or by interacting directly
with the settings dictionary.


Note

This type of customization can be included in the Parameter File using key setting.




Note

When using the feature classes directly, feature class level settings can be customized by providing them as keyword
arguments at initialization of the feature class.



Below are the settings that control the behaviour of the extraction, ordered per level and category. Each setting is
listed as it’s unique, case sensitive name, followed by it’s default value in brackets. After the default value is the
documentation on the type of the value and what the setting controls.


Feature Extractor Level

Image Normalization


	normalize [False]: Boolean, set to True to enable normalizing of the image before any resampling. See also
normalizeImage().


	normalizeScale [1]: Float, > 0, determines the scale after normalizing the image. If normalizing is disabled, this
has no effect.


	removeOutliers [None]: Float, > 0, defines the outliers to remove from the image. An outlier is defined as values
that differ more than \(n\sigma_x\) from the mean, where \(n>0\) and equal to the value of this setting. If
this parameter is omitted (providing it without a value (i.e. None) in the parameter file will throw an error), no
outliers are removed. If normalizing is disabled, this has no effect. See also
normalizeImage().




Resampling the image/mask


	resampledPixelSpacing [None]: List of 3 floats (>= 0), sets the size of the voxel in (x, y, z) plane when resampling.
A value of 0 is replaced with the spacing for that dimension as it is in the original (non-resampled) image or mask. For example, to perform only in-plane resampling, the x and y values alone should be edited (e.g.: [2,2,0]). In-plane resolution is always relative to image acquisition plane (i.e. axial, coronal or sagittal).


	interpolator [sitkBSpline]: SimpleITK constant or string name thereof, sets interpolator to use for resampling. The choice of interpolator is only applied to resampling images, while sitkNearestNeighbor is always used for resampling masks in order to preserve label values.
Enumerated value, possible values:



	sitkNearestNeighbor (= 1)


	sitkLinear (= 2)


	sitkBSpline (= 3)


	sitkGaussian (= 4)


	sitkLabelGaussian (= 5)


	sitkHammingWindowedSinc (= 6)


	sitkCosineWindowedSinc (= 7)


	sitkWelchWindowedSinc (= 8)


	sitkLanczosWindowedSinc (= 9)


	sitkBlackmanWindowedSinc (= 10)









	padDistance [5]: Integer, \(\geq 0\), set the number of voxels pad cropped tumor volume with during resampling.
Padding occurs in new feature space and is done on all faces, i.e. size increases in x, y and z direction by
2*padDistance. Padding is needed for some filters (e.g. LoG). Value of padded voxels are set to original gray level
intensity, padding does not exceed original image boundaries. N.B. After application of filters image is cropped
again without padding.





Note

Resampling is disabled when either resampledPixelSpacing or interpolator is set to None



Pre-Cropping


	preCrop [False]: Boolean, if true and resampling is disabled, crops the image onto the bounding box with additional
padding as specified in padDistance. Similar to padding after resampling, padding does not exceed original image
bounds after pre-cropping. Setting preCrop to true speeds up extraction and makes it less memory intensive,
especially in the case of large images with only small ROIs.





Note

Because image and mask are also cropped onto the bounding box before they are passed to the feature classes,
pre-crop is only beneficial when filters are enabled.



Resegmentation


	resegmentRange [None]: List of 1 or 2 floats, specifies the lower and and optionally upper threshold,
respectively. Segmented voxels outside this range are removed from the mask prior to feature calculation. When the
value is None (default), no resegmentation is performed. Resegemented size is checked (using parameter
minimumROISize, default 1) and upon fail, an error is logged and extraction is skipped for this case.


	resegmentMode [‘absolute’]: string, specifying the method to use for defining the resegmentation thresholds:


	‘absolute’: The resegmentRange values are treated as absolute values, i.e. used directly to perform resegmentation.


	‘relative’: The resegmentRange values are treated as relative to the maximum in the ROI, i.e. the actual threshold
used is defined as \(\text{threshold} = \text{value} * X_{max}\).


	‘sigma’: The resegmentRange values indicate a distance from the mean of the ROI in standard deviations. E.g. to
exclude outliers farther from the mean than 3 sigma, specify mode ‘sigma’ and range [-3, 3]. Threshold is defined as
\(\text{threshold} = \mu + \text{value} * \sigma\).






	resegmentShape [False]: Boolean, if set to True, the resegmented mask is also used for shape calculation. If set
to False (default), only first order and texture classes are calculated using the resegmented mask (known in IBSI as
the intensity mask). Shape is then calculated using the mask after any optional resampling and corrections (known in
IBSI as the morphologic mask).




Mask validation


	minimumROIDimensions [2]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, respectively).
Single-voxel segmentations are always excluded.


	minimumROISize [None]: Integer, > 0, specifies the minimum number of voxels required. Test is skipped
if this parameter is omitted (specifying it as None in the parameter file will throw an error).


	geometryTolerance [None]: Float, determines the tolarance used by SimpleITK to compare origin, direction and spacing
between image and mask. Affects the fist step in checkMask(). If set to None,
PyRadiomics will use SimpleITK default (1e-16).


	correctMask [False]: Boolean, if set to true, PyRadiomics will attempt to resample the mask to the image geometry when
the first step in checkMask() fails. This uses a nearest neighbor interpolator.
Mask check will still fail if the ROI defined in the mask includes areas outside of the image physical space.




Miscellaneous


	additionalInfo [True]: boolean, set to False to disable inclusion of additional information on the extraction in the
output. See also addProvenance().






Filter Level

Laplacian of Gaussian settings


	sigma: List of floats or integers, must be greater than 0. Sigma values to use for the filter (determines coarseness).





Warning

Setting for sigma must be provided if LoG filter is enabled. If omitted, no LoG image features are calculated and
the function will return an empty dictionary.



Wavelet settings


	start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions
from which a signature is calculated


	level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.


	wavelet [“coif1”]: string, type of wavelet decomposition. Enumerated value, validated against possible values
present in the pyWavelet.wavelist(). Current possible values (pywavelet version 0.4.0) (where an
aditional number is needed, range of values is indicated in []):



	haar


	dmey


	sym[2-20]


	db[1-20]


	coif[1-5]


	bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]


	rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]











Gradient settings


	gradientUseSpacing [True]: Boolean, if true, image spacing is taken into account when computing the
gradient magnitude in the image.




Local Binary Pattern 2D


	lbp2DRadius [1]: Float, > 0, specifies the radius in which the neighbours should be sampled


	lbp2DSamples [9]: Integer, \(\geq 1\), specifies the number of samples to use


	lbp2DMethod [‘uniform’]: String, specifies the method for computing the LBP to use.





Warning

Requires package skimage to function.



Local Binary Pattern 3D


	lbp3DLevels [2]: integer, \(\geq 1\), specifies the the number of levels in spherical harmonics to use.


	lbp3DIcosphereRadius [1]: Float, > 0, specifies the radius in which the neighbours should be sampled


	lbp3DIcosphereSubdivision [1]: Integer, \(\geq 0\), specifies the number of subdivisions to apply in the
icosphere





Warning

Requires package scipy and trimesh to function.





Feature Class Level


	Label [1]: Integer, label value of Region of Interest (ROI) in labelmap.




Image discretization


	binWidth [25]: Float, > 0, size of the bins when making a histogram and for discretization of the image gray level.


	binCount [None]: integer, > 0, specifies the number of bins to create. The width of the bin is
then determined by the range in the ROI. No definitive evidence is available on which method of discretization is
superior, we advise a fixed bin width. See more here.




Forced 2D extraction


	force2D [False]: Boolean, set to true to force a by slice texture calculation. Dimension that identifies
the ‘slice’ can be defined in force2Ddimension. If input ROI is already a 2D ROI, features are automatically
extracted in 2D.


	force2Ddimension [0]: int, range 0-2. Specifies the ‘slice’ dimension for a by-slice feature extraction. A value of 0 represents the native acquisition plane for the images (usually axial for CT and axial, coronal or sagittal for MRI).
Similarly, 1 identifies the out-of plane y dimension (e.g. coronal plane for an axial image) and 2 the out-of-plane x dimension (e.g. sagittal plane for an acial image). if
force2D is set to False, this parameter has no effect.




Texture matrix weighting


	weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:



	‘manhattan’: first order norm


	‘euclidean’: second order norm


	‘infinity’: infinity norm.


	‘no_weighting’: GLCMs are weighted by factor 1 and summed


	None: Applies no weighting, mean of values calculated on separate matrices is returned.







In case of other values, an warning is logged and option ‘no_weighting’ is used.






Note

This only affects the GLCM and GLRLM feature classes. Moreover, weighting is applied differently in those classes.
For more information on how weighting is applied, see the documentation on GLCM and
GLRLM.



Distance to neighbour


	distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.





Note

This only affects the GLCM and NGTDM feature classes. The GLSZM and GLRLM feature classes use a fixed distance of 1
(infinity norm) to define neighbours.





Feature Class Specific Settings

First Order


	voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total Energy and
RMS, this is to prevent negative values. If using CT data, or data normalized with mean 0, consider setting this
parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the image. Bear in mind however, that
the larger the value, the larger the volume confounding effect will be.




GLCM


	symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two directions per angle,
which results in a symmetrical matrix, with equal distributions for \(i\) and \(j\). A symmetrical matrix
corresponds to the GLCM as defined by Haralick et al.




GLDM


	gldm_a [0]: float, \(\alpha\) cutoff value for dependence. A neighbouring voxel with gray level \(j\) is
considered dependent on center voxel with gray level \(i\) if \(|i-j|\le\alpha\)







Voxel-based specific settings

When using PyRadiomics to generate feature maps, additional customization options exist. These control the neighborhood
around each voxel that is used for calculation (kernel) and what the background value should be, i.e. the value of
voxels for which there is no calculated value.


	kernelRadius [1]: integer, specifies the size of the kernel to use as the radius from the center voxel. Therefore
the actual size is 2 * kernelRadius + 1. E.g. a value of 1 yields a 3x3x3 kernel, a value of 2 5x5x5, etc. In case
of 2D extraction, the generated kernel will also be a 2D shape (square instead of cube).


	maskedKernel [True]: boolean, specifies whether to mask the kernel with the overall mask. If True, only voxels in
the kernel that are also segmented in the mask are used for calculation. Otherwise, all voxels inside the kernel are
used. Moreover, gray value discretization is performed over the ROI if the setting is set to True, and over the entire
image if False.


	initValue [0]: float, value to use for voxels outside the ROI, or voxels where calculation failed. If set to
nan, 3D slicer will treat them as transparent voxels


	voxelBatch [-1]: integer > 0, this value controls the maximum number of voxels that are calculated in one batch.
Larger batches mean less loops in Python and therefore a quicker extraction, but do require more memory. This setting
allows the user to compromise between extraction speed and memory usage.
When providing this setting, the value is constrained to be > 0, only by not providing it is the default value of -1
used (which means: all voxels in 1 batch).







Parameter File

All 4 categories of customization can be provided in a single yaml or JSON structured text file, which can be provided
in an optional argument (--param) when running pyradiomics from the command line. In interactive mode, it can be
provided during initialization of the feature extractor, or using
loadParams() after initialization. This removes the need
to hard code a customized extraction in a python script through use of functions described above. Additionally, this
also makes it more easy to share settings for customized extractions. We encourage users to share their parameter files
in the PyRadiomics repository. See Submitting a parameter file for more information on how to submit
your parameter file.


Note

For an extensive list of possible settings, see Image Types,
Feature Classes and Settings,
which can be provided in the parameter file using key imageType, featureClass and setting, respectively.




Note

Examples of the parameter file are provided in the pyradiomics/examples/exampleSettings folder.



The paramsFile is written according to the YAML-convention (www.yaml.org) and is checked by the code for
consistency. Only one yaml document per file is allowed. Parameters must be grouped by customization category as mentioned
above. This is reflected in the structure of the document as follows:

<Customization Category>:
  <Setting Name>: <value>
  ...
<Customization Categort>:
  ...





Blank lines may be inserted to increase readability, these are ignored by the parser. Additional comments are also
possible, these are preceded by an ‘#’ and can be inserted on a blank line, or on a line containing parameters:

# This is a line containing only comments
setting: # This is a comment placed after the declaration of the 'setting' category.





Any keyword, such as a customization category or setting name may only be mentioned once. Multiple instances do not
raise an error, but only the last one encountered is used.

The three setting types are named as follows:


	imageType: image type to calculate features on. <value> is custom kwarg settings (dictionary). if <value>
is an empty dictionary (‘{}’), no custom settings are added for this input image.


	featureClass: Feature class to enable, <value> is list of strings representing enabled features. If no
<value> is specified or <value> is an empty list (‘[]’), all features for this class are enabled.


	setting: Setting to use for pre processing and class specific settings. if no <value> is specified, the value for
this setting is set to None.


	voxelSetting: Settings used to control the voxel-based specific settings. E.g. the size of the kernel used and
the background value in the parameter maps.




Example:

# This is a non-active comment on a separate line
imageType:
    Original: {}
    LoG: {'sigma' : [1.0, 3.0]}  # This is a non active comment on a line with active code preceding it.
    Wavelet:
        binWidth: 10

featureClass:
    glcm:
    glrlm: []
    firstorder: ['Mean',
                 'StandardDeviation']
    shape:
        - Volume
        - SurfaceArea

setting:
    binWidth: 25
    resampledPixelSpacing:





In this example, 3 image types are enabled (“Original”, “LoG” (Laplacian of Gaussian) and “Wavelet”), with custom
settings specified for “LoG” (“sigma”) and “Wavelet” (“binWidth”). Note that the manner of specifying the custom
settings for “LoG” and “Wavelet” is equivalent.

Next, 4 feature classes are defined. “glcm” and “glrlm” are both enabled with all possible features in the respective
class, whereas only “Mean” and “StandardDeviation” are enabled for “firstorder”, and only “Volume” and “SurfaceArea” for
shape. Note that the manner of specifying individual features for “firstorder” and “shape” is equivalent.

Finally, 2 settings are specified: “binWidth”, whose value has been set to 25 (but will be set to 10 during extraction
of “Wavelet” derived features), and “resampledPixelSpacing”, where no value is provided, which is equivalent to a
python “None” value.


Note


	settings not specified in parameters are set to their default value.


	enabledFeatures are replaced by those in parameters (i.e. only specified features/classes are enabled. If the
‘featureClass’ customization type is omitted, all feature classes and features are enabled.


	ImageTypes are replaced by those in parameters (i.e. only specified types are used to extract features from. If
the ‘inputImage’ customization type is omitted, only “Original” image type is used for feature extraction, with no
additional custom settings.
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Pipeline Modules

This section contains the documentation on the various modules used to define the PyRadiomics pipeline and pre-process
the input data. Feature class modules, which contain the feature definitions are documented in the
Radiomic Features section.

Additionally, this section contains the documentation for the
radiomics.generalinfo module, which provides the additional information about the
extraction in the output. This additional information is added to enhance reproducibility of the results.

Finally, this section contains documentation for the global functions, which are used
throughout the toolbox (such as logging and the C extensions) and the
radiomics.base module, which defines the common interface for the feature classes.


Feature Extractor


	
class radiomics.featureextractor.RadiomicsFeatureExtractor(*args, **kwargs)[source]

	Bases: object

Wrapper class for calculation of a radiomics signature.
At and after initialisation various settings can be used to customize the resultant signature.
This includes which classes and features to use, as well as what should be done in terms of preprocessing the image
and what images (original and/or filtered) should be used as input.

Then a call to execute() generates the radiomics
signature specified by these settings for the passed image and labelmap combination. This function can be called
repeatedly in a batch process to calculate the radiomics signature for all image and labelmap combinations.

At initialization, a parameters file (string pointing to yaml or json structured file) or dictionary can be provided
containing all necessary settings (top level containing keys “setting”, “imageType” and/or “featureClass). This is
done by passing it as the first positional argument. If no positional argument is supplied, or the argument is not
either a dictionary or a string pointing to a valid file, defaults will be applied.
Moreover, at initialisation, custom settings (NOT enabled image types and/or feature classes) can be provided
as keyword arguments, with the setting name as key and its value as the argument value (e.g. binWidth=25).
Settings specified here will override those in the parameter file/dict/default settings.
For more information on possible settings and customization, see
Customizing the Extraction.

By default, all features in all feature classes are enabled.
By default, only Original input image is enabled (No filter applied).


	
addProvenance(provenance_on=True)[source]

	Enable or disable reporting of additional information on the extraction. This information includes toolbox version,
enabled input images and applied settings. Furthermore, additional information on the image and region of interest
(ROI) is also provided, including original image spacing, total number of voxels in the ROI and total number of
fully connected volumes in the ROI.

To disable this, call addProvenance(False).






	
loadParams(paramsFile)[source]

	Parse specified parameters file and use it to update settings, enabled feature(Classes) and image types. For more
information on the structure of the parameter file, see
Customizing the extraction.

If supplied file does not match the requirements (i.e. unrecognized names or invalid values for a setting), a
pykwalify error is raised.






	
loadJSONParams(JSON_configuration)[source]

	Pars JSON structured configuration string and use it to update settings, enabled feature(Classes) and image types.
For more information on the structure of the parameter file, see
Customizing the extraction.

If supplied string does not match the requirements (i.e. unrecognized names or invalid values for a setting), a
pykwalify error is raised.






	
execute(imageFilepath, maskFilepath, label=None, label_channel=None, voxelBased=False)[source]

	Compute radiomics signature for provide image and mask combination. It comprises of the following steps:


	Image and mask are loaded and normalized/resampled if necessary.


	Validity of ROI is checked using checkMask(), which also computes and returns the
bounding box.


	If enabled, provenance information is calculated and stored as part of the result. (Not available in voxel-based
extraction)


	Shape features are calculated on a cropped (no padding) version of the original image. (Not available in
voxel-based extraction)


	If enabled, resegment the mask based upon the range specified in resegmentRange (default None: resegmentation
disabled).


	Other enabled feature classes are calculated using all specified image types in _enabledImageTypes. Images
are cropped to tumor mask (no padding) after application of any filter and before being passed to the feature
class.


	The calculated features is returned as collections.OrderedDict.





	Parameters

	
	imageFilepath – SimpleITK Image, or string pointing to image file location


	maskFilepath – SimpleITK Image, or string pointing to labelmap file location


	label – Integer, value of the label for which to extract features. If not specified, last specified label
is used. Default label is 1.


	label_channel – Integer, index of the channel to use when maskFilepath yields a SimpleITK.Image with a vector
pixel type. Default index is 0.


	voxelBased – Boolean, default False. If set to true, a voxel-based extraction is performed, segment-based
otherwise.






	Returns

	dictionary containing calculated signature (“<imageType>_<featureClass>_<featureName>”:value).
In case of segment-based extraction, value type for features is float, if voxel-based, type is SimpleITK.Image.
Type of diagnostic features differs, but can always be represented as a string.










	
static loadImage(ImageFilePath, MaskFilePath, generalInfo=None, **kwargs)[source]

	Load and pre-process the image and labelmap.
If ImageFilePath is a string, it is loaded as SimpleITK Image and assigned to image,
if it already is a SimpleITK Image, it is just assigned to image.
All other cases are ignored (nothing calculated).
Equal approach is used for assignment of mask using MaskFilePath. If necessary, a segmentation object (i.e. mask
volume with vector-image type) is then converted to a labelmap (=scalar image type). Data type is forced to UInt32.
See also getMask().

If normalizing is enabled image is first normalized before any resampling is applied.

If resampling is enabled, both image and mask are resampled and cropped to the tumor mask (with additional
padding as specified in padDistance) after assignment of image and mask.


	Parameters

	
	ImageFilePath – SimpleITK.Image object or string pointing to SimpleITK readable file representing the image
to use.


	MaskFilePath – SimpleITK.Image object or string pointing to SimpleITK readable file representing the mask
to use.


	generalInfo – GeneralInfo Object. If provided, it is used to store diagnostic information of the
pre-processing.


	kwargs – Dictionary containing the settings to use for this particular image type.






	Returns

	2 SimpleITK.Image objects representing the loaded image and mask, respectively.










	
computeShape(image, mask, boundingBox, **kwargs)[source]

	Calculate the shape (2D and/or 3D) features for the passed image and mask.


	Parameters

	
	image – SimpleITK.Image object representing the image used


	mask – SimpleITK.Image object representing the mask used


	boundingBox – The boundingBox calculated by checkMask(), i.e. a tuple with lower
(even indices) and upper (odd indices) bound of the bounding box for each dimension.


	kwargs – Dictionary containing the settings to use.






	Returns

	collections.OrderedDict containing the calculated shape features. If no features are calculated, an empty
OrderedDict will be returned.










	
computeFeatures(image, mask, imageTypeName, **kwargs)[source]

	Compute signature using image, mask and **kwargs settings.

This function computes the signature for just the passed image (original or derived), it does not pre-process or
apply a filter to the passed image. Features / Classes to use for calculation of signature are defined in
self.enabledFeatures. See also enableFeaturesByName().


	Parameters

	
	image – The cropped (and optionally filtered) SimpleITK.Image object representing the image used


	mask – The cropped SimpleITK.Image object representing the mask used


	imageTypeName – String specifying the filter applied to the image, or “original” if no filter was applied.


	kwargs – Dictionary containing the settings to use for this particular image type.






	Returns

	collections.OrderedDict containing the calculated features for all enabled classes.
If no features are calculated, an empty OrderedDict will be returned.






Note

shape descriptors are independent of gray level and therefore calculated separately (handled in execute). In
this function, no shape features are calculated.








	
enableAllImageTypes()[source]

	Enable all possible image types without any custom settings.






	
disableAllImageTypes()[source]

	Disable all image types.






	
enableImageTypeByName(imageType, enabled=True, customArgs=None)[source]

	Enable or disable specified image type. If enabling image type, optional custom settings can be specified in
customArgs.

Current possible image types are:


	Original: No filter applied


	Wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying either
a High or a Low pass filter in each of the three dimensions.
See also getWaveletImage()


	LoG: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change, where sigma
defines how coarse the emphasised texture should be. A low sigma emphasis on fine textures (change over a
short distance), where a high sigma value emphasises coarse textures (gray level change over a large distance).
See also getLoGImage()


	Square: Takes the square of the image intensities and linearly scales them back to the original range.
Negative values in the original image will be made negative again after application of filter.


	SquareRoot: Takes the square root of the absolute image intensities and scales them back to original range.
Negative values in the original image will be made negative again after application of filter.


	Logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
negative original values are made negative again after application of filter.


	Exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
scaled to original range and negative original values are made negative again after application of filter.


	Gradient: Returns the gradient magnitude.


	LBP2D: Calculates and returns a local binary pattern applied in 2D.


	LBP3D: Calculates and returns local binary pattern maps applied in 3D using spherical harmonics. Last returned
image is the corresponding kurtosis map.




For the mathmetical formulas of square, squareroot, logarithm and exponential, see their respective functions in
imageoperations
(getSquareImage(),
getSquareRootImage(),
getLogarithmImage(),
getExponentialImage(),
getGradientImage(),
getLBP2DImage() and
getLBP3DImage(),
respectively).






	
enableImageTypes(**enabledImagetypes)[source]

	Enable input images, with optionally custom settings, which are applied to the respective input image.
Settings specified here override those in kwargs.
The following settings are not customizable:


	interpolator


	resampledPixelSpacing


	padDistance




Updates current settings: If necessary, enables input image. Always overrides custom settings specified
for input images passed in inputImages.
To disable input images, use enableInputImageByName() or disableAllInputImages()
instead.


	Parameters

	enabledImagetypes – dictionary, key is imagetype (original, wavelet or log) and value is custom settings
(dictionary)










	
enableAllFeatures()[source]

	Enable all classes and all features.


Note

Individual features that have been marked “deprecated” are not enabled by this function. They can still be enabled
manually by a call to enableFeatureByName(),
enableFeaturesByName()
or in the parameter file (by specifying the feature by name, not when enabling all features).
However, in most cases this will still result only in a deprecation warning.








	
disableAllFeatures()[source]

	Disable all classes.






	
enableFeatureClassByName(featureClass, enabled=True)[source]

	Enable or disable all features in given class.


Note

Individual features that have been marked “deprecated” are not enabled by this function. They can still be enabled
manually by a call to enableFeatureByName(),
enableFeaturesByName()
or in the parameter file (by specifying the feature by name, not when enabling all features).
However, in most cases this will still result only in a deprecation warning.








	
enableFeaturesByName(**enabledFeatures)[source]

	Specify which features to enable. Key is feature class name, value is a list of enabled feature names.

To enable all features for a class, provide the class name with an empty list or None as value.
Settings for feature classes specified in enabledFeatures.keys are updated, settings for feature classes
not yet present in enabledFeatures.keys are added.
To disable the entire class, use disableAllFeatures() or enableFeatureClassByName() instead.











Image Processing and Filters


	
radiomics.imageoperations.getMask(mask, **kwargs)[source]

	Function to get the correct mask. Includes enforcing a correct pixel data type (UInt32).

Also supports extracting the mask for a segmentation (stored as SimpleITK Vector image) if necessary.
In this case, the mask at index label_channel is extracted. The resulting 3D volume is then treated as it were a
scalar input volume (i.e. with the region of interest defined by voxels with value matching label).

Finally, checks if the mask volume contains an ROI identified by label. Raises a value error if the label is not
present (including a list of valid labels found).


	Parameters

	
	mask – SimpleITK Image object representing the mask. Can be a vector image to allow for overlapping masks.


	kwargs – keyword arguments. If argument label_channel is present, this is used to select the channel.
Otherwise label_channel 0 is assumed.






	Returns

	SimpleITK.Image with pixel type UInt32 representing the mask volume










	
radiomics.imageoperations.getBinEdges(parameterValues, **kwargs)[source]

	Calculate and return the histogram using parameterValues (1D array of all segmented voxels in the image).

Fixed bin width:

Returns the bin edges, a list of the edges of the calculated bins, length is N(bins) + 1. Bins are defined such, that
the bin edges are equally spaced from zero, and that the leftmost edge \(\leq \min(X_{gl})\). These bin edges
represent the half-open ranges of each bin \([\text{lower_edge}, \text{upper_edge})\) and result in gray value
discretization as follows:


\[X_{b, i} = \lfloor \frac{X_{gl, i}}{W} \rfloor - \lfloor \frac {\min(X_{gl})}{W} \rfloor + 1\]

Here, \(X_{gl, i}\) and \(X_{b, i}\) are gray level intensities before and after discretization, respectively.
\({W}\) is the bin width value (specfied in binWidth parameter). The first part of the formula ensures that
the bins are equally spaced from 0, whereas the second part ensures that the minimum gray level intensity inside the
ROI after binning is always 1.

In the case where the maximum gray level intensity is equally dividable by the binWidth, i.e.
\(\max(X_{gl}) \mod W = 0\), this will result in that maximum gray level being assigned to bin
\([\max(X_{gl}), \max(X_{gl}) + W)\), which is consistent with numpy.digitize, but different from the behaviour
of numpy.histogram, where the final bin has a closed range, including the maximum gray level, i.e.
\([\max(X_{gl}) - W, \max(X_{gl})]\).


Note

This method is slightly different from the fixed bin size discretization method described by IBSI. The two most
notable differences are 1) that PyRadiomics uses a floor division (and adds 1), as opposed to a ceiling division and
2) that in PyRadiomics, bins are always equally spaced from 0, as opposed to equally spaced from the minimum
gray level intensity.



Example: for a ROI with values ranging from 54 to 166, and a bin width of 25, the bin edges will be [50, 75, 100,
125, 150, 175].

This value can be directly passed to numpy.histogram to generate a histogram or numpy.digitize to discretize
the ROI gray values. See also binImage().

Fixed bin Count:


\[\begin{split}X_{b, i} = \left\{ {\begin{array}{lcl}
\lfloor N_b\frac{(X_{gl, i} - \min(X_{gl})}{\max(X_{gl}) - \min(X_{gl})} \rfloor + 1 &
\mbox{for} & X_{gl, i} < \max(X_{gl}) \\
N_b & \mbox{for} & X_{gl, i} = \max(X_{gl}) \end{array}} \right.\end{split}\]

Here, \(N_b\) is the number of bins to use, as defined in binCount.

References


	Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics:
the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(August):11075.









	
radiomics.imageoperations.binImage(parameterMatrix, parameterMatrixCoordinates=None, **kwargs)[source]

	Discretizes the parameterMatrix (matrix representation of the gray levels in the ROI) using the binEdges calculated
using getBinEdges(). Only voxels defined by parameterMatrixCoordinates (defining the segmentation) are used
for calculation of histogram and subsequently discretized. Voxels outside segmentation are left unchanged.






	
radiomics.imageoperations.checkMask(imageNode, maskNode, **kwargs)[source]

	Checks whether the Region of Interest (ROI) defined in the mask size and dimensions match constraints, specified in
settings. The following checks are performed.


	Check whether the mask corresponds to the image (i.e. has a similar size, spacing, direction and origin). N.B.
This check is performed by SimpleITK, if it fails, an error is logged, with additional error information from
SimpleITK logged with level DEBUG (i.e. logging-level has to be set to debug to store this information in the log
file). The tolerance can be increased using the geometryTolerance parameter. Alternatively, if the
correctMask parameter is True, PyRadiomics will check if the mask contains a valid ROI (inside image
physical area) and if so, resample the mask to image geometry. See Settings for more info.


	Check if the label is present in the mask


	Count the number of dimensions in which the size of the ROI > 1 (i.e. does the ROI represent a single voxel (0), a
line (1), a surface (2) or a volume (3)) and compare this to the minimum number of dimension required (specified in
minimumROIDimensions).


	Optional. Check if there are at least N voxels in the ROI. N is defined in minimumROISize, this test is skipped
if minimumROISize = None.




This function returns a tuple of two items. The first item is the bounding box of the mask. The second item is the
mask that has been corrected by resampling to the input image geometry (if that resampling was successful).

If a check fails, a ValueError is raised. No features will be extracted for this mask.
If the mask passes all tests, this function returns the bounding box, which is used in the cropToTumorMask()
function.

The bounding box is calculated during (1.) and used for the subsequent checks. The bounding box is
calculated by SimpleITK.LabelStatisticsImageFilter() and returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z,
U_z), where ‘L’ and ‘U’ are lower and upper bound, respectively, and ‘x’, ‘y’ and ‘z’ the three image dimensions.

By reusing the bounding box calculated here, calls to SimpleITK.LabelStatisticsImageFilter() are reduced, improving
performance.

Uses the following settings:


	minimumROIDimensions [1]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, respectively).
Single-voxel segmentations are always excluded.


	minimumROISize [None]: Integer, > 0,  specifies the minimum number of voxels required. Test is skipped if
this parameter is set to None.





Note

If the first check fails there are generally 2 possible causes:



	The image and mask are matched, but there is a slight difference in origin, direction or spacing. The exact
cause, difference and used tolerance are stored with level DEBUG in a log (if enabled). For more information on
setting up logging, see “setting up logging” and the helloRadiomics examples
(located in the pyradiomics/examples folder). This problem can be fixed by changing the global tolerance
(geometryTolerance parameter) or enabling mask correction (correctMask parameter).


	The image and mask do not match, but the ROI contained within the mask does represent a physical volume
contained within the image. If this is the case, resampling is needed to ensure matching geometry between image
and mask before features can be extracted. This can be achieved by enabling mask correction using the
correctMask parameter.














	
radiomics.imageoperations.cropToTumorMask(imageNode, maskNode, boundingBox, **kwargs)[source]

	Create a sitkImage of the segmented region of the image based on the input label.

Create a sitkImage of the labelled region of the image, cropped to have a
cuboid shape equal to the ijk boundaries of the label.


	Parameters

	
	boundingBox – The bounding box used to crop the image. This is the bounding box as returned by
checkMask().


	label – [1], value of the label, onto which the image and mask must be cropped.






	Returns

	Cropped image and mask (SimpleITK image instances).










	
radiomics.imageoperations.resampleImage(imageNode, maskNode, **kwargs)[source]

	Resamples image and mask to the specified pixel spacing (The default interpolator is Bspline).

Resampling can be enabled using the settings ‘interpolator’ and ‘resampledPixelSpacing’ in the parameter file or as
part of the settings passed to the feature extractor. See also
feature extractor.

‘imageNode’ and ‘maskNode’ are SimpleITK Objects, and ‘resampledPixelSpacing’ is the output pixel spacing (sequence of
3 elements).

If only in-plane resampling is required, set the output pixel spacing for the out-of-plane dimension (usually the last
dimension) to 0. Spacings with a value of 0 are replaced by the spacing as it is in the original mask.

Only part of the image and labelmap are resampled. The resampling grid is aligned to the input origin, but only voxels
covering the area of the image ROI (defined by the bounding box) and the padDistance are resampled. This results in a
resampled and partially cropped image and mask. Additional padding is required as some filters also sample voxels
outside of segmentation boundaries. For feature calculation, image and mask are cropped to the bounding box without
any additional padding, as the feature classes do not need the gray level values outside the segmentation.

The resampling grid is calculated using only the input mask. Even when image and mask have different directions, both
the cropped image and mask will have the same direction (equal to direction of the mask). Spacing and size are
determined by settings and bounding box of the ROI.


Note

Before resampling the bounds of the non-padded ROI are compared to the bounds. If the ROI bounding box includes
areas outside of the physical space of the image, an error is logged and (None, None) is returned. No features will
be extracted. This enables the input image and mask to have different geometry, so long as the ROI defines an area
within the image.




Note

The additional padding is adjusted, so that only the physical space within the mask is resampled. This is done to
prevent resampling outside of the image. Please note that this assumes the image and mask to image the same physical
space. If this is not the case, it is possible that voxels outside the image are included in the resampling grid,
these will be assigned a value of 0. It is therefore recommended, but not enforced, to use an input mask which has
the same or a smaller physical space than the image.








	
radiomics.imageoperations.normalizeImage(image, **kwargs)[source]

	Normalizes the image by centering it at the mean with standard deviation. Normalization is based on all gray values in
the image, not just those inside the segmentation.

\(f(x) = \frac{s(x - \mu_x)}{\sigma_x}\)

Where:


	\(x\) and \(f(x)\) are the original and normalized intensity, respectively.


	\(\mu_x\) and \(\sigma_x\) are the mean and standard deviation of the image instensity values.


	\(s\) is an optional scaling defined by scale. By default, it is set to 1.




Optionally, outliers can be removed, in which case values for which \(x > \mu_x + n\sigma_x\) or
\(x < \mu_x - n\sigma_x\) are set to \(\mu_x + n\sigma_x\) and \(\mu_x - n\sigma_x\), respectively.
Here, \(n>0\) and defined by outliers. This, in turn, is controlled by the removeOutliers parameter.
Removal of outliers is done after the values of the image are normalized, but before scale is applied.






	
radiomics.imageoperations.resegmentMask(imageNode, maskNode, **kwargs)[source]

	Resegment the Mask based on the range specified by the threshold(s) in resegmentRange. Either 1 or 2 thresholds
can be defined. In case of 1 threshold, all values equal to or higher than that threshold are included. If there are
2 thresholds, all voxels with a value inside the closed-range defined by these thresholds is included
(i.e. a voxels is included if \(T_{lower} \leq X_gl \leq T_{upper}\)).
The resegmented mask is therefore always equal or smaller in size than the original mask.
In the case where either resegmentRange or resegmentMode contains illigal values, a ValueError is raised.

There are 3 modes for defining the threshold:


	absolute (default): The values in resegmentRange define  as absolute values (i.e. corresponding to the gray values
in the image


	relative: The values in resegmentRange define the threshold as relative to the maximum value found in the ROI.
(e.g. 0.5 indicates a threshold at 50% of maximum gray value)


	sigma: The threshold is defined as the number of sigma from the mean. (e.g. resegmentRange [-3, 3] will include
all voxels that have a value that differs 3 or less standard deviations from the mean).









	
radiomics.imageoperations.getOriginalImage(inputImage, inputMask, **kwargs)[source]

	This function does not apply any filter, but returns the original image. This function is needed to
dynamically expose the original image as a valid image type.


	Returns

	Yields original image, ‘original’ and kwargs










	
radiomics.imageoperations.getLoGImage(inputImage, inputMask, **kwargs)[source]

	Applies a Laplacian of Gaussian filter to the input image and yields a derived image for each sigma value specified.

A Laplacian of Gaussian image is obtained by convolving the image with the second derivative (Laplacian) of a Gaussian
kernel.

The Gaussian kernel is used to smooth the image and is defined as


\[G(x, y, z, \sigma) = \frac{1}{(\sigma \sqrt{2 \pi})^3}e^{-\frac{x^2 + y^2 + z^2}{2\sigma^2}}\]

The Gaussian kernel is convolved by the laplacian kernel \(\nabla^2G(x, y, z)\), which is sensitive to areas with
rapidly changing intensities, enhancing edges. The width of the filter in the Gaussian kernel is determined by
\(\sigma\) and can be used to emphasize more fine (low \(\sigma\) values) or coarse (high \(\sigma\)
values) textures.


Warning

The LoG filter implemented in PyRadiomics is a 3D LoG filter, and therefore requires 3D input. Features using a
single slice (2D) segmentation can still be extracted, but the input image must be a 3D image, with a minimum size
in all dimensions \(\geq \sigma\). If input image is too small, a warning is logged and \(\sigma\) value is
skipped. Moreover, the image size must be at least 4 voxels in each dimensions, if this constraint is not met, no
LoG derived images can be generated.



Following settings are possible:


	sigma: List of floats or integers, must be greater than 0. Filter width (mm) to use for the Gaussian kernel
(determines coarseness).





Warning

Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function
will return an empty dictionary.



Returned filter name reflects LoG settings:
log-sigma-<sigmaValue>-3D.

References:


	SimpleITK Doxygen documentation [https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1LaplacianRecursiveGaussianImageFilter.html]


	ITK Doxygen documentation [https://itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html]


	https://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian





	Returns

	Yields log filtered image for each specified sigma, corresponding image type name and kwargs (customized
settings).










	
radiomics.imageoperations.getWaveletImage(inputImage, inputMask, **kwargs)[source]

	Applies wavelet filter to the input image and yields the decompositions and the approximation.

Following settings are possible:


	start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions
from which a signature is calculated


	level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.


	wavelet [“coif1”]: string, type of wavelet decomposition. Enumerated value, validated against possible values
present in the pyWavelet.wavelist(). Current possible values (pywavelet version 0.4.0) (where an
aditional number is needed, range of values is indicated in []):


	haar


	dmey


	sym[2-20]


	db[1-20]


	coif[1-5]


	bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]


	rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]








Returned filter name reflects wavelet type:
wavelet[level]-<decompositionName>

N.B. only levels greater than the first level are entered into the name.


	Returns

	Yields each wavelet decomposition and final approximation, corresponding imaget type name and kwargs
(customized settings).










	
radiomics.imageoperations.getSquareImage(inputImage, inputMask, **kwargs)[source]

	Computes the square of the image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.

\(f(x) = (cx)^2,\text{ where } c=\displaystyle\frac{1}{\sqrt{\max(|x|)}}\)

Where \(x\) and \(f(x)\) are the original and filtered intensity, respectively.


	Returns

	Yields square filtered image, ‘square’ and kwargs (customized settings).










	
radiomics.imageoperations.getSquareRootImage(inputImage, inputMask, **kwargs)[source]

	Computes the square root of the absolute value of image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.

\(f(x) = \left\{ {\begin{array}{lcl}
\sqrt{cx} & \mbox{for} & x \ge 0 \\
-\sqrt{-cx} & \mbox{for} & x < 0\end{array}} \right.,\text{ where } c=\max(|x|)\)

Where \(x\) and \(f(x)\) are the original and filtered intensity, respectively.


	Returns

	Yields square root filtered image, ‘squareroot’ and kwargs (customized settings).










	
radiomics.imageoperations.getLogarithmImage(inputImage, inputMask, **kwargs)[source]

	Computes the logarithm of the absolute value of the original image + 1.

Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.

\(f(x) = \left\{ {\begin{array}{lcl}
c\log{(x + 1)} & \mbox{for} & x \ge 0 \\
-c\log{(-x + 1)} & \mbox{for} & x < 0\end{array}} \right. \text{, where } c=\frac{\max(|x|)}{\log(\max(|x|) + 1)}\)

Where \(x\) and \(f(x)\) are the original and filtered intensity, respectively.


	Returns

	Yields logarithm filtered image, ‘logarithm’ and kwargs (customized settings)










	
radiomics.imageoperations.getExponentialImage(inputImage, inputMask, **kwargs)[source]

	Computes the exponential of the original image.

Resulting values are rescaled on the range of the initial original image.

\(f(x) = e^{cx},\text{ where } c=\displaystyle\frac{\log(\max(|x|))}{\max(|x|)}\)

Where \(x\) and \(f(x)\) are the original and filtered intensity, respectively.


	Returns

	Yields exponential filtered image, ‘exponential’ and kwargs (customized settings)










	
radiomics.imageoperations.getGradientImage(inputImage, inputMask, **kwargs)[source]

	Compute and return the Gradient Magnitude in the image.
By default, takes into account the image spacing, this can be switched off by specifying
gradientUseSpacing = False.

References:


	SimpleITK documentation [https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1GradientMagnitudeImageFilter.html]


	https://en.wikipedia.org/wiki/Image_gradient









	
radiomics.imageoperations.getLBP2DImage(inputImage, inputMask, **kwargs)[source]

	Compute and return the Local Binary Pattern (LBP) in 2D. If force2D is set to false (= feature extraction in 3D) a
warning is logged, as this filter processes the image in a by-slice operation. The plane in which the LBP is
applied can be controlled by the force2Ddimension parameter (see also generateAngles()).

Following settings are possible (in addition to force2Ddimension):



	lbp2DRadius [1]: Float, specifies the radius in which the neighbours should be sampled


	lbp2DSamples [9]: Integer, specifies the number of samples to use


	lbp2DMethod [‘uniform’]: String, specifies the method for computing the LBP to use.







For more information see scikit documentation [http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern]


	Returns

	Yields LBP filtered image, ‘lbp-2D’ and kwargs (customized settings)






Note

LBP can often return only a very small number of different gray levels. A customized bin width is often needed.




Warning

Requires package scikit-image to function. If not available, this filter logs a warning and does not yield an image.



References:


	T. Ojala, M. Pietikainen, and D. Harwood (1994), “Performance evaluation of texture measures with classification
based on Kullback discrimination of distributions”, Proceedings of the 12th IAPR International Conference on Pattern
Recognition (ICPR 1994), vol. 1, pp. 582 - 585.


	T. Ojala, M. Pietikainen, and D. Harwood (1996), “A Comparative Study of Texture Measures with Classification Based
on Feature Distributions”, Pattern Recognition, vol. 29, pp. 51-59.









	
radiomics.imageoperations.getLBP3DImage(inputImage, inputMask, **kwargs)[source]

	Compute and return the Local Binary Pattern (LBP) in 3D using spherical harmonics.
If force2D is set to true (= feature extraction in 2D) a warning is logged.

LBP is only calculated for voxels segmented in the mask

Following settings are possible:



	lbp3DLevels [2]: integer, specifies the the number of levels in spherical harmonics to use.


	lbp3DIcosphereRadius [1]: Float, specifies the radius in which the neighbours should be sampled


	lbp3DIcosphereSubdivision [1]: Integer, specifies the number of subdivisions to apply in the icosphere








	Returns

	Yields LBP filtered image for each level, ‘lbp-3D-m<level>’ and kwargs (customized settings).
Additionally yields the kurtosis image, ‘lbp-3D-k’ and kwargs.






Note

LBP can often return only a very small number of different gray levels. A customized bin width is often needed.




Warning

Requires package scipy and trimesh to function. If not available, this filter logs a warning and does not
yield an image.



References:


	Banerjee, J, Moelker, A, Niessen, W.J, & van Walsum, T.W. (2013), “3D LBP-based rotationally invariant region
description.” In: Park JI., Kim J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer
Science, vol 7728. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-37410-4_3










General Info Module


	
class radiomics.generalinfo.GeneralInfo[source]

	Bases: object


	
getGeneralInfo()[source]

	Return a dictionary containing all general info items. Format is <info_item>:<value>, where the type
of the value is preserved. For CSV format, this will result in conversion to string and quotes where necessary, for
JSON, the values will be interpreted and stored as JSON strings.






	
addStaticElements()[source]

	Adds the following elements to the general info:


	Version: current version of PyRadiomics


	NumpyVersion: version of numpy used


	SimpleITKVersion: version SimpleITK used


	PyWaveletVersion: version of PyWavelet used


	PythonVersion: version of the python interpreter running PyRadiomics









	
addImageElements(image, prefix='original')[source]

	Calculates provenance info for the image

Adds the following:


	Hash: sha1 hash of the mask, which can be used to check if the same mask was used during reproducibility
tests. (Only added when prefix is “original”)


	Dimensionality: Number of dimensions (e.g. 2D, 3D) in the image. (Only added when prefix is “original”)


	Spacing: Pixel spacing (x, y, z) in mm.


	Size: Dimensions (x, y, z) of the image in number of voxels.


	Mean: Mean intensity value over all voxels in the image.


	Minimum: Minimum intensity value among all voxels in the image.


	Maximum: Maximum intensity value among all voxels in the image.




A prefix is added to indicate what type of image is described:


	original: Image as loaded, without pre-processing.


	interpolated: Image after it has been resampled to a new spacing (includes cropping).









	
addMaskElements(image, mask, label, prefix='original')[source]

	Calculates provenance info for the mask

Adds the following:


	MaskHash: sha1 hash of the mask, which can be used to check if the same mask was used during reproducibility
tests. (Only added when prefix is “original”)


	BoundingBox: bounding box of the ROI defined by the specified label:
Elements 0, 1 and 2 are the x, y and z coordinates of the lower bound, respectively.
Elements 3, 4 and 5 are the size of the bounding box in x, y and z direction, respectively.


	VoxelNum: Number of voxels included in the ROI defined by the specified label.


	VolumeNum: Number of fully connected (26-connectivity) volumes in the ROI defined by the specified label.


	CenterOfMassIndex: x, y and z coordinates of the center of mass of the ROI in terms of the image coordinate space
(continuous index).


	CenterOfMass: the real-world x, y and z coordinates of the center of mass of the ROI


	ROIMean: Mean intensity value over all voxels in the ROI defined by the specified label.


	ROIMinimum: Minimum intensity value among all voxels in the ROI defined by the specified label.


	ROIMaximum: Maximum intensity value among all voxels in the ROI defined by the specified label.




A prefix is added to indicate what type of mask is described:


	original: Mask as loaded, without pre-processing.


	corrected: Mask after it has been corrected by imageoperations.checkMask().


	interpolated: Mask after it has been resampled to a new spacing (includes cropping).


	resegmented: Mask after resegmentation has been applied.









	
addGeneralSettings(settings)[source]

	Add a string representation of the general settings.
Format is {<settings_name>:<value>, …}.






	
addEnabledImageTypes(enabledImageTypes)[source]

	Add a string representation of the enabled image types and any custom settings for each image type.
Format is {<imageType_name>:{<setting_name>:<value>, …}, …}.











Feature Class Base


	
class radiomics.base.RadiomicsFeaturesBase(inputImage, inputMask, **kwargs)[source]

	Bases: object

This is the abstract class, which defines the common interface for the feature classes. All feature classes inherit
(directly of indirectly) from this class.

At initialization, image and labelmap are passed as SimpleITK image objects (inputImage and inputMask,
respectively.) The motivation for using SimpleITK images as input is to keep the possibility of reusing the
optimized feature calculators implemented in SimpleITK in the future. If either the image or the mask is None,
initialization fails and a warning is logged (does not raise an error).

Logging is set up using a child logger from the parent ‘radiomics’ logger. This retains the toolbox structure in
the generated log. The child logger is named after the module containing the feature class (e.g. ‘radiomics.glcm’).

Any pre calculations needed before the feature functions are called can be added by overriding the
_initSegmentBasedCalculation function, which prepares the input for feature extraction. If image discretization is
needed, this can be implemented by adding a call to _applyBinning to this initialization function, which also
instantiates coefficients holding the maximum (‘Ng’) and unique (‘GrayLevels’) that can be found inside the ROI after
binning. This function also instantiates the matrix variable, which holds the discretized image (the imageArray
variable will hold only original gray levels).

The following variables are instantiated at initialization:


	kwargs: dictionary holding all customized settings passed to this feature class.


	label: label value of Region of Interest (ROI) in labelmap. If key is not present, a default value of 1 is used.


	featureNames: list containing the names of features defined in the feature class. See getFeatureNames()


	inputImage: SimpleITK image object of the input image (dimensions x, y, z)




The following variables are instantiated by the _initSegmentBasedCalculation function:


	inputMask: SimpleITK image object of the input labelmap (dimensions x, y, z)


	imageArray: numpy array of the gray values in the input image (dimensions z, y, x)


	maskArray: numpy boolean array with elements set to True where labelmap = label, False otherwise,
(dimensions z, y, x).


	labelledVoxelCoordinates: tuple of 3 numpy arrays containing the z, x and y coordinates of the voxels included in
the ROI, respectively. Length of each array is equal to total number of voxels inside ROI.


	matrix: copy of the imageArray variable, with gray values inside ROI discretized using the specified binWidth.
This variable is only instantiated if a call to _applyBinning is added to an override of
_initSegmentBasedCalculation in the feature class.





Note

Although some variables listed here have similar names to customization settings, they do not represent all the
possible settings on the feature class level. These variables are listed here to help developers develop new feature
classes, which make use of these variables. For more information on customization, see
Customizing the Extraction, which includes a comprehensive list of all possible settings, including
default values and explanation of usage.




	
enableFeatureByName(featureName, enable=True)[source]

	Enables or disables feature specified by featureName. If feature is not present in this class, a lookup error is
raised. enable specifies whether to enable or disable the feature.






	
enableAllFeatures()[source]

	Enables all features found in this class for calculation.


Note

Features that have been marked “deprecated” are not enabled by this function. They can still be enabled manually by
a call to enableFeatureByName(),
enableFeaturesByName()
or in the parameter file (by specifying the feature by name, not when enabling all features).
However, in most cases this will still result only in a deprecation warning.








	
disableAllFeatures()[source]

	Disables all features. Additionally resets any calculated features.






	
classmethod getFeatureNames()[source]

	Dynamically enumerates features defined in the feature class. Features are identified by the
get<Feature>FeatureValue signature, where <Feature> is the name of the feature (unique on the class level).

Found features are returned as a dictionary of the feature names, where the value True if the
feature is deprecated, False otherwise ({<Feature1>:<deprecated>, <Feature2>:<deprecated>, ...}).

This function is called at initialization, found features are stored in the featureNames variable.






	
execute()[source]

	Calculates all features enabled in  enabledFeatures. A feature is enabled if it’s key is present in this
dictionary and it’s value is True.

Calculated values are stored in the featureValues dictionary, with feature name as key and the calculated
feature value as value. If an exception is thrown during calculation, the error is logged, and the value is set to
NaN.











Global Toolbox Functions


	
radiomics.deprecated(func)[source]

	Decorator function to mark functions as deprecated. This is used to ensure deprecated feature functions are not
added to the enabled features list when enabling ‘all’ features.






	
radiomics.getFeatureClasses()[source]

	Iterates over all modules of the radiomics package using pkgutil and subsequently imports those modules.

Return a dictionary of all modules containing featureClasses, with modulename as key, abstract
class object of the featureClass as value. Assumes only one featureClass per module

This is achieved by inspect.getmembers. Modules are added if it contains a member that is a class,
with name starting with ‘Radiomics’ and is inherited from radiomics.base.RadiomicsFeaturesBase.

This iteration only runs once (at initialization of toolbox), subsequent calls return the dictionary created by the
first call.






	
radiomics.getImageTypes()[source]

	Returns a list of possible image types (i.e. the possible filters and the “Original”, unfiltered image type). This
function finds the image types dynamically by matching the signature (“get<imageType>Image”) against functions defined
in imageoperations. Returns a list containing available image type names
(<imageType> part of the corresponding function name).

This iteration only occurs once, at initialization of the toolbox. Found results are stored and returned on subsequent
calls.






	
radiomics.getParameterValidationFiles()[source]

	Returns file locations for the parameter schema and custom validation functions, which are needed when validating
a parameter file using PyKwalify.core.
This functions returns a tuple with the file location of the schema as first and python script with custom validation
functions as second element.






	
radiomics.getProgressReporter(*args, **kwargs)[source]

	This function returns an instance of the progressReporter, if it is set and the logging level is defined at level INFO
or DEBUG. In all other cases a dummy progress reporter is returned.

To enable progress reporting, the progressReporter variable should be set to a class object (NOT an instance), which
fits the following signature:


	Accepts an iterable as the first positional argument and a keyword argument (‘desc’) specifying a label to display


	Can be used in a ‘with’ statement (i.e. exposes a __enter__ and __exit__ function)


	Is iterable (i.e. at least specifies an __iter__ function, which iterates over the iterable passed at
initialization).




It is also possible to create your own progress reporter. To achieve this, additionally specify a function __next__,
and have the __iter__ function return self. The __next__ function takes no arguments and returns a call to the
__next__ function of the iterable (i.e. return self.iterable.__next__()). Any prints/progress reporting calls can
then be inserted in this function prior to the return statement.






	
radiomics.getTestCase(testCase, dataDirectory=None)[source]

	This function provides an image and mask for testing PyRadiomics. One of seven test cases can be selected:



	brain1


	brain2


	breast1


	lung1


	lung2


	test_wavelet_64x64x64


	test_wavelet_37x37x37







Checks if the test case (consisting of an image and mask file with signature <testCase>_image.nrrd and
<testCase>_label.nrrd, respectively) is available in the dataDirectory. If not available, the testCase is
downloaded from the GitHub repository and stored in the dataDirectory. Also creates the dataDirectory if
necessary.
If no dataDirectory has been specified, PyRadiomics will use a temporary directory: <TEMPDIR>/pyradiomics/data.

If the test case has been found or downloaded successfully, this function returns a tuple of two strings:
(path/to/image.nrrd, path/to/mask.nrrd). In case of an error (None, None) is returned.


Note

To get the testcase with the corresponding single-slice label, append “_2D” to the testCase.








	
radiomics.setVerbosity(level)[source]

	Change the amount of information PyRadiomics should print out during extraction. The lower the level, the more
information is printed to the output (stderr).

Using the level (Python defined logging levels) argument, the following levels are possible:


	60: Quiet mode, no messages are printed to the stderr


	50: Only log messages of level “CRITICAL” are printed


	40: Log messages of level “ERROR” and up are printed


	30: Log messages of level “WARNING” and up are printed


	20: Log messages of level “INFO” and up are printed


	10: Log messages of level “DEBUG” and up are printed (i.e. all log messages)




By default, the radiomics logger is set to level “INFO” and the stderr handler to level “WARNING”. Therefore a log
storing the extraction log messages from level “INFO” and up can be easily set up by adding an appropriate handler to
the radiomics logger, while the output to stderr will still only contain warnings and errors.


Note

This function assumes the handler added to the radiomics logger at initialization of the toolbox is not removed from
the logger handlers and therefore remains the first handler.




Note

This does not affect the level of the logger itself (e.g. if verbosity level = 3, log messages with DEBUG level can
still be stored in a log file if an appropriate handler is added to the logger and the logging level of the logger
has been set to the correct level. Exception: In case the verbosity is set to DEBUG, the level of the logger is
also lowered to DEBUG. If the verbosity level is then raised again, the logger level will remain DEBUG.
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Radiomic Features

This section contains the definitions of the various features that can be extracted using PyRadiomics. They are
subdivided into the following classes:


	First Order Statistics (19 features)


	Shape-based (3D) (16 features)


	Shape-based (2D) (10 features)


	Gray Level Cooccurence Matrix (24 features)


	Gray Level Run Length Matrix (16 features)


	Gray Level Size Zone Matrix (16 features)


	Neighbouring Gray Tone Difference Matrix (5 features)


	Gray Level Dependence Matrix (14 features)




All feature classes, with the exception of shape can be calculated on either the original image and/or a derived image,
obtained by applying one of several filters. The shape descriptors are independent of gray value, and are extracted from
the label mask. If enabled, they are calculated separately of enabled input image types, and listed in the result as if
calculated on the original image.

Most features defined below are in compliance with feature definitions as described by the Imaging Biomarker
Standardization Initiative (IBSI), which are available in a separate document by Zwanenburg et al. (2016) 1.
Where features differ, a note has been added specifying the difference.


First Order Features


	
class radiomics.firstorder.RadiomicsFirstOrder(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

First-order statistics describe the distribution of voxel intensities within the image region defined by the mask
through commonly used and basic metrics.

Let:


	\(\textbf{X}\) be a set of \(N_p\) voxels included in the ROI


	\(\textbf{P}(i)\) be the first order histogram with \(N_g\) discrete intensity levels,
where \(N_g\) is the number of non-zero bins, equally spaced from 0 with a width defined in the binWidth
parameter.


	\(p(i)\) be the normalized first order histogram and equal to \(\frac{\textbf{P}(i)}{N_p}\)




Following additional settings are possible:


	voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total Energy and
RMS, this is to prevent negative values. If using CT data, or data normalized with mean 0, consider setting this
parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the image. Bear in mind however, that
the larger the value, the larger the volume confounding effect will be.





Note

In the IBSI feature definitions, no correction for negative gray values is implemented. To achieve similar behaviour
in PyRadiomics, set voxelArrayShift to 0.




	
getEnergyFeatureValue()[source]

	1. Energy


\[\textit{energy} = \displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}\]

Here, \(c\) is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in \(\textbf{X}\). This ensures that voxels with the lowest gray values contribute the least to Energy,
instead of voxels with gray level intensity closest to 0.

Energy is a measure of the magnitude of voxel values in an image. A larger values implies a greater sum of the
squares of these values.


Note

This feature is volume-confounded, a larger value of \(c\) increases the effect of volume-confounding.








	
getTotalEnergyFeatureValue()[source]

	2. Total Energy


\[\textit{total energy} = V_{voxel}\displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}\]

Here, \(c\) is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in \(\textbf{X}\). This ensures that voxels with the lowest gray values contribute the least to Energy,
instead of voxels with gray level intensity closest to 0.

Total Energy is the value of Energy feature scaled by the volume of the voxel in cubic mm.


Note

This feature is volume-confounded, a larger value of \(c\) increases the effect of volume-confounding.




Note

Not present in IBSI feature definitions








	
getEntropyFeatureValue()[source]

	3. Entropy


\[\textit{entropy} = -\displaystyle\sum^{N_g}_{i=1}{p(i)\log_2\big(p(i)+\epsilon\big)}\]

Here, \(\epsilon\) is an arbitrarily small positive number (\(\approx 2.2\times10^{-16}\)).

Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of information
required to encode the image values.


Note

Defined by IBSI as Intensity Histogram Entropy.








	
getMinimumFeatureValue()[source]

	4. Minimum


\[\textit{minimum} = \min(\textbf{X})\]






	
get10PercentileFeatureValue()[source]

	5. 10th percentile

The 10th percentile of \(\textbf{X}\)






	
get90PercentileFeatureValue()[source]

	6. 90th percentile

The 90th percentile of \(\textbf{X}\)






	
getMaximumFeatureValue()[source]

	7. Maximum


\[\textit{maximum} = \max(\textbf{X})\]

The maximum gray level intensity within the ROI.






	
getMeanFeatureValue()[source]

	8. Mean


\[\textit{mean} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{\textbf{X}(i)}\]

The average gray level intensity within the ROI.






	
getMedianFeatureValue()[source]

	9. Median

The median gray level intensity within the ROI.






	
getInterquartileRangeFeatureValue()[source]

	10. Interquartile Range


\[\textit{interquartile range} = \textbf{P}_{75} - \textbf{P}_{25}\]

Here \(\textbf{P}_{25}\) and \(\textbf{P}_{75}\) are the 25th and 75th percentile of the
image array, respectively.






	
getRangeFeatureValue()[source]

	11. Range


\[\textit{range} = \max(\textbf{X}) - \min(\textbf{X})\]

The range of gray values in the ROI.






	
getMeanAbsoluteDeviationFeatureValue()[source]

	12. Mean Absolute Deviation (MAD)


\[\textit{MAD} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{|\textbf{X}(i)-\bar{X}|}\]

Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value of the image array.






	
getRobustMeanAbsoluteDeviationFeatureValue()[source]

	13. Robust Mean Absolute Deviation (rMAD)


\[\textit{rMAD} = \frac{1}{N_{10-90}}\displaystyle\sum^{N_{10-90}}_{i=1}
{|\textbf{X}_{10-90}(i)-\bar{X}_{10-90}|}\]

Robust Mean Absolute Deviation is the mean distance of all intensity values
from the Mean Value calculated on the subset of image array with gray levels in between, or equal
to the 10th and 90th percentile.






	
getRootMeanSquaredFeatureValue()[source]

	14. Root Mean Squared (RMS)


\[\textit{RMS} = \sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}}\]

Here, \(c\) is optional value, defined by voxelArrayShift, which shifts the intensities to prevent negative
values in \(\textbf{X}\). This ensures that voxels with the lowest gray values contribute the least to RMS,
instead of voxels with gray level intensity closest to 0.

RMS is the square-root of the mean of all the squared intensity values. It is another measure of the magnitude of
the image values. This feature is volume-confounded, a larger value of \(c\) increases the effect of
volume-confounding.






	
getStandardDeviationFeatureValue()[source]

	15. Standard Deviation


\[\textit{standard deviation} = \sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}}\]

Standard Deviation measures the amount of variation or dispersion from the Mean Value. By definition,
\(\textit{standard deviation} = \sqrt{\textit{variance}}\)


Note

As this feature is correlated with variance, it is marked so it is not enabled by default.
To include this feature in the extraction, specify it by name in the enabled features
(i.e. this feature will not be enabled if no individual features are specified (enabling ‘all’ features),
but will be enabled when individual features are specified, including this feature).
Not present in IBSI feature definitions (correlated with variance)








	
getSkewnessFeatureValue()[source]

	16. Skewness


\[\textit{skewness} = \displaystyle\frac{\mu_3}{\sigma^3} =
\frac{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^3}}
{\left(\sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}}\right)^3}\]

Where \(\mu_3\) is the 3rd central moment.

Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on where the tail is
elongated and the mass of the distribution is concentrated, this value can be positive or negative.

Related links:

https://en.wikipedia.org/wiki/Skewness


Note

In case of a flat region, the standard deviation and 4rd central moment will be both 0. In this case, a
value of 0 is returned.








	
getKurtosisFeatureValue()[source]

	17. Kurtosis


\[\textit{kurtosis} = \displaystyle\frac{\mu_4}{\sigma^4} =
\frac{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^4}}
{\left(\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X}})^2\right)^2}\]

Where \(\mu_4\) is the 4th central moment.

Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image ROI. A higher kurtosis implies
that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean. A lower kurtosis
implies the reverse: that the mass of the distribution is concentrated towards a spike near the Mean value.

Related links:

https://en.wikipedia.org/wiki/Kurtosis


Note

In case of a flat region, the standard deviation and 4rd central moment will be both 0. In this case, a
value of 0 is returned.




Note

The IBSI feature definition implements excess kurtosis, where kurtosis is corrected by -3, yielding 0 for normal
distributions. The PyRadiomics kurtosis is not corrected, yielding a value 3 higher than the IBSI kurtosis.








	
getVarianceFeatureValue()[source]

	18. Variance


\[\textit{variance} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}\]

Variance is the the mean of the squared distances of each intensity value from the Mean value. This is a measure of
the spread of the distribution about the mean. By definition, \(\textit{variance} = \sigma^2\)






	
getUniformityFeatureValue()[source]

	19. Uniformity


\[\textit{uniformity} = \displaystyle\sum^{N_g}_{i=1}{p(i)^2}\]

Uniformity is a measure of the sum of the squares of each intensity value. This is a measure of the homogeneity of
the image array, where a greater uniformity implies a greater homogeneity or a smaller range of discrete intensity
values.


Note

Defined by IBSI as Intensity Histogram Uniformity.













Shape Features (3D)


	
class radiomics.shape.RadiomicsShape(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

In this group of features we included descriptors of the three-dimensional size and shape of the ROI. These features
are independent from the gray level intensity distribution in the ROI and are therefore only calculated on the
non-derived image and mask.

Unless otherwise specified, features are derived from the approximated shape defined by the triangle mesh. To build
this mesh, vertices (points) are first defined as points halfway on an edge between a voxel included in the ROI and
one outside the ROI. By connecting these vertices a mesh of connected triangles is obtained, with each triangle
defined by 3 adjacent vertices, which shares each side with exactly one other triangle.

This mesh is generated using a marching cubes algorithm. In this algorithm, a 2x2 cube is moved through the mask
space. For each position, the corners of the cube are then marked ‘segmented’ (1) or ‘not segmented’ (0). Treating the
corners as specific bits in a binary number, a unique cube-index is obtained (0-255). This index is then used to
determine which triangles are present in the cube, which are defined in a lookup table.

These triangles are defined in such a way, that the normal (obtained from the cross product of vectors describing 2
out of 3 edges) are always oriented in the same direction. For PyRadiomics, the calculated normals are always pointing
outward. This is necessary to obtain the correct signed volume used in calculation of MeshVolume.

Let:


	\(N_v\) represent the number of voxels included in the ROI


	\(N_f\) represent the number of faces (triangles) defining the Mesh.


	\(V\) the volume of the mesh in mm3, calculated by getMeshVolumeFeatureValue()


	\(A\) the surface area of the mesh in mm2, calculated by getMeshSurfaceAreaFeatureValue()




References:


	Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput
Graph Internet [http://portal.acm.org/citation.cfm?doid=37402.37422]. 1987;21:163-9.





	
getMeshVolumeFeatureValue()[source]

	1. Mesh Volume


\[ \begin{align}\begin{aligned}V_i = \displaystyle\frac{Oa_i \cdot (Ob_i \times Oc_i)}{6} \text{ (1)}\\V = \displaystyle\sum^{N_f}_{i=1}{V_i} \text{ (2)}\end{aligned}\end{align} \]

The volume of the ROI \(V\) is calculated from the triangle mesh of the ROI.
For each face \(i\) in the mesh, defined by points \(a_i, b_i\) and \(c_i\), the (signed) volume
\(V_f\) of the tetrahedron defined by that face and the origin of the image (\(O\)) is calculated. (1)
The sign of the volume is determined by the sign of the normal, which must be consistently defined as either facing
outward or inward of the ROI.

Then taking the sum of all \(V_i\), the total volume of the ROI is obtained (2)


Note

For more extensive documentation on how the volume is obtained using the surface mesh, see the IBSI document,
where this feature is defined as Volume.








	
getVoxelVolumeFeatureValue()[source]

	2. Voxel Volume


\[V_{voxel} = \displaystyle\sum^{N_v}_{k=1}{V_k}\]

The volume of the ROI \(V_{voxel}\) is approximated by multiplying the number of voxels in the ROI by the volume
of a single voxel \(V_k\). This is a less precise approximation of the volume and is not used in subsequent
features. This feature does not make use of the mesh and is not used in calculation of other shape features.


Note

Defined in IBSI as Approximate Volume.








	
getSurfaceAreaFeatureValue()[source]

	3. Surface Area


\[ \begin{align}\begin{aligned}A_i = \frac{1}{2}|\text{a}_i\text{b}_i \times \text{a}_i\text{c}_i| \text{ (1)}\\A = \displaystyle\sum^{N_f}_{i=1}{A_i} \text{ (2)}\end{aligned}\end{align} \]

where:

\(\text{a}_i\text{b}_i\) and \(\text{a}_i\text{c}_i\) are edges of the \(i^{\text{th}}\) triangle in the
mesh, formed by vertices \(\text{a}_i\), \(\text{b}_i\) and \(\text{c}_i\).

To calculate the surface area, first the surface area \(A_i\) of each triangle in the mesh is calculated (1).
The total surface area is then obtained by taking the sum of all calculated sub-areas (2).


Note

Defined in IBSI as Surface Area.








	
getSurfaceVolumeRatioFeatureValue()[source]

	4. Surface Area to Volume ratio


\[\textit{surface to volume ratio} = \frac{A}{V}\]

Here, a lower value indicates a more compact (sphere-like) shape. This feature is not dimensionless, and is
therefore (partly) dependent on the volume of the ROI.






	
getSphericityFeatureValue()[source]

	5. Sphericity


\[\textit{sphericity} = \frac{\sqrt[3]{36 \pi V^2}}{A}\]

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It is a
dimensionless measure, independent of scale and orientation. The value range is \(0 < sphericity \leq 1\), where
a value of 1 indicates a perfect sphere (a sphere has the smallest possible surface area for a given volume,
compared to other solids).


Note

This feature is correlated to Compactness 1, Compactness 2 and Spherical Disproportion. In the default
parameter file provided in the pyradiomics/examples/exampleSettings folder, Compactness 1 and Compactness 2
are therefore disabled.








	
getCompactness1FeatureValue()[source]

	6. Compactness 1


\[\textit{compactness 1} = \frac{V}{\sqrt{\pi A^3}}\]

Similar to Sphericity, Compactness 1 is a measure of how compact the shape of the tumor is relative to a sphere
(most compact). It is therefore correlated to Sphericity and redundant. It is provided here for completeness.
The value range is \(0 < compactness\ 1 \leq \frac{1}{6 \pi}\), where a value of \(\frac{1}{6 \pi}\)
indicates a perfect sphere.

By definition, \(compactness\ 1 = \frac{1}{6 \pi}\sqrt{compactness\ 2} =
\frac{1}{6 \pi}\sqrt{sphericity^3}\).


Note

This feature is correlated to Compactness 2, Sphericity and Spherical Disproportion.
Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
individual features are specified (enabling ‘all’ features), but will be enabled when individual features are
specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
features.








	
getCompactness2FeatureValue()[source]

	7. Compactness 2


\[\textit{compactness 2} = 36 \pi \frac{V^2}{A^3}\]

Similar to Sphericity and Compactness 1, Compactness 2 is a measure of how compact the shape of the tumor is
relative to a sphere (most compact). It is a dimensionless measure, independent of scale and orientation. The value
range is \(0 < compactness\ 2 \leq 1\), where a value of 1 indicates a perfect sphere.

By definition, \(compactness\ 2 = (sphericity)^3\)


Note

This feature is correlated to Compactness 1, Sphericity and Spherical Disproportion.
Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
individual features are specified (enabling ‘all’ features), but will be enabled when individual features are
specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
features.








	
getSphericalDisproportionFeatureValue()[source]

	8. Spherical Disproportion


\[\textit{spherical disproportion} = \frac{A}{4\pi R^2} = \frac{A}{\sqrt[3]{36 \pi V^2}}\]

Where \(R\) is the radius of a sphere with the same volume as the tumor, and equal to
\(\sqrt[3]{\frac{3V}{4\pi}}\).

Spherical Disproportion is the ratio of the surface area of the tumor region to the surface area of a sphere with
the same volume as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value range is
\(spherical\ disproportion \geq 1\), with a value of 1 indicating a perfect sphere.


Note

This feature is correlated to Compactness 2, Compactness2 and Sphericity.
Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
individual features are specified (enabling ‘all’ features), but will be enabled when individual features are
specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
features.








	
getMaximum3DDiameterFeatureValue()[source]

	9. Maximum 3D diameter

Maximum 3D diameter is defined as the largest pairwise Euclidean distance between tumor surface mesh
vertices.

Also known as Feret Diameter.






	
getMaximum2DDiameterSliceFeatureValue()[source]

	10. Maximum 2D diameter (Slice)

Maximum 2D diameter (Slice) is defined as the largest pairwise Euclidean distance between tumor surface mesh
vertices in the row-column (generally the axial) plane.






	
getMaximum2DDiameterColumnFeatureValue()[source]

	11. Maximum 2D diameter (Column)

Maximum 2D diameter (Column) is defined as the largest pairwise Euclidean distance between tumor surface mesh
vertices in the row-slice (usually the coronal) plane.






	
getMaximum2DDiameterRowFeatureValue()[source]

	12. Maximum 2D diameter (Row)

Maximum 2D diameter (Row) is defined as the largest pairwise Euclidean distance between tumor surface mesh
vertices in the column-slice (usually the sagittal) plane.






	
getMajorAxisLengthFeatureValue()[source]

	13. Major Axis Length


\[\textit{major axis} = 4 \sqrt{\lambda_{major}}\]

This feature yield the largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
principal component \(\lambda_{major}\).

The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getMinorAxisLengthFeatureValue()[source]

	14. Minor Axis Length


\[\textit{minor axis} = 4 \sqrt{\lambda_{minor}}\]

This feature yield the second-largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
principal component \(\lambda_{minor}\).

The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getLeastAxisLengthFeatureValue()[source]

	15. Least Axis Length


\[\textit{least axis} = 4 \sqrt{\lambda_{least}}\]

This feature yield the smallest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
principal component \(\lambda_{least}\). In case of a 2D segmentation, this value will be 0.

The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getElongationFeatureValue()[source]

	16. Elongation

Elongation shows the relationship between the two largest principal components in the ROI shape.
For computational reasons, this feature is defined as the inverse of true elongation.


\[\textit{elongation} = \sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}\]

Here, \(\lambda_{\text{major}}\) and \(\lambda_{\text{minor}}\) are the lengths of the largest and second
largest principal component axes. The values range between 1 (where the cross section through the first and second
largest principal moments is circle-like (non-elongated)) and 0 (where the object is a maximally elongated: i.e. a 1
dimensional line).

The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getFlatnessFeatureValue()[source]

	17. Flatness

Flatness shows the relationship between the largest and smallest principal components in the ROI shape.
For computational reasons, this feature is defined as the inverse of true flatness.


\[\textit{flatness} = \sqrt{\frac{\lambda_{least}}{\lambda_{major}}}\]

Here, \(\lambda_{\text{major}}\) and \(\lambda_{\text{least}}\) are the lengths of the largest and smallest
principal component axes. The values range between 1 (non-flat, sphere-like) and 0 (a flat object, or single-slice
segmentation).

The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.











Shape Features (2D)


	
class radiomics.shape2D.RadiomicsShape2D(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

In this group of features we included descriptors of the two-dimensional size and shape of the ROI. These features
are independent from the gray level intensity distribution in the ROI and are therefore only calculated on the
non-derived image and mask.

Unless otherwise specified, features are derived from the approximated shape defined by the circumference mesh. To
build this mesh, vertices (points) are first defined as points halfway on an edge between a pixel included in the ROI
and one outside the ROI. By connecting these vertices a mesh of connected lines is obtained, with each line
defined by 2 adjacent vertices, which shares each a point with exactly one other line.

This mesh is generated using an adapted version marching cubes algorithm. In this algorithm, a 2x2 square is moved
through the mask space (2d). For each position, the corners of the square are then marked ‘segmented’ (1) or
‘not segmented’ (0). Treating the corners as specific bits in a binary number, a unique square-index is obtained
(0-15). This index is then used to determine which lines are present in the square, which are defined in a lookup
table.

These lines are defined in such a way, that the normal of the triangle defined by these points and the origin
is always oriented in the a consistent direction. This results in signed values for the surface area of each triangle,
so that when summed, the superfluous (postive) area included by triangles partly inside and outside the ROI is
perfectly cancelled out by the (negative) area of triangles entirely outside the ROI.

Let:


	\(N_p\) represent the number of pixels included in the ROI


	\(N_f\) represent the number of lines defining the circumference (perimeter) Mesh.


	\(A\) the surface area of the mesh in mm2, calculated by getMeshSurfaceFeatureValue()


	\(P\) the perimeter of the mesh in mm, calculated by getPerimeterFeatureValue()





Note

This class can only be calculated for truly 2D masks. To ensure correct processing, it is required that
force2D is set to True and force2Ddimension to the dimension that is out-of plane (e.g. 0 (z-axis) for
an axial slice). Furthermore, this dimension is required to have size 1. If not set correctly, a ValueError is
raised.



References:


	Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput
Graph Internet [http://portal.acm.org/citation.cfm?doid=37402.37422]. 1987;21:163-9.





	
getMeshSurfaceFeatureValue()[source]

	1. Mesh Surface


\[ \begin{align}\begin{aligned}A_i = \frac{1}{2}\text{Oa}_i \times \text{Ob}_i \text{ (1)}\\A = \displaystyle\sum^{N_f}_{i=1}{A_i} \text{ (2)}\end{aligned}\end{align} \]

where:

\(\text{O}_i\text{a}_i\) and \(\text{O}_i\text{b}_i\) are edges of the \(i^{\text{th}}\) triangle in the
mesh, formed by vertices \(\text{a}_i\), \(\text{b}_i\) of the perimiter and the origin \(\text{O}\).

To calculate the surface area, first the signed surface area \(A_i\) of each triangle in the mesh is calculated
(1). The total surface area is then obtained by taking the sum of all calculated sub-areas (2), where the sign will
ensure correct surface area, as the negative area of triangles outside the ROI will cancel out the surplus area
included by triangles partly inside and partly outside the ROI.






	
getPixelSurfaceFeatureValue()[source]

	2. Pixel Surface


\[A_{pixel} = \displaystyle\sum^{N_v}_{k=1}{A_k}\]

The surface area of the ROI \(A_{pixel}\) is approximated by multiplying the number of pixels in the ROI by the
surface area of a single pixel \(A_k\). This is a less precise approximation of the surface area.
This feature does not make use of the mesh and is not used in calculation of other 2D shape features.






	
getPerimeterFeatureValue()[source]

	3. Perimeter


\[ \begin{align}\begin{aligned}P_i = \sqrt{(\text{a}_i-\text{b}_i)^2} \text{ (1)}\\P = \displaystyle\sum^{N_f}_{i=1}{P_i} \text{ (2)}\end{aligned}\end{align} \]

where:

\(\text{a}_i\) and \(\text{b}_i\) are vertices of the \(i^{\text{th}}\) line in the
perimeter mesh.

To calculate the perimeter, first the perimeter \(A_i\) of each line in the mesh circumference is calculated
(1). The total perimeter is then obtained by taking the sum of all calculated sub-areas (2).






	
getPerimeterSurfaceRatioFeatureValue()[source]

	4. Perimeter to Surface ratio


\[\textit{perimeter to surface ratio} = \frac{P}{A}\]

Here, a lower value indicates a more compact (circle-like) shape. This feature is not dimensionless, and is
therefore (partly) dependent on the surface area of the ROI.






	
getSphericityFeatureValue()[source]

	5. Sphericity


\[\textit{sphericity} = \frac{2\pi R}{P} = \frac{2\sqrt{\pi A}}{P}\]

Where \(R\) is the radius of a circle with the same surface as the ROI, and equal to
\(\sqrt{\frac{A}{\pi}}\).

Sphericity is the ratio of the perimeter of the tumor region to the perimeter of a circle with
the same surface area as the tumor region and therefore a measure of the roundness of the shape of the tumor region
relative to a circle. It is a dimensionless measure, independent of scale and orientation. The value range is
\(0 < sphericity \leq 1\), where a value of 1 indicates a perfect circle (a circle has the smallest possible
perimeter for a given surface area, compared to other shapes).


Note

This feature is correlated to Spherical Disproportion. Therefore, only this feature is enabled by default.








	
getSphericalDisproportionFeatureValue()[source]

	6. Spherical Disproportion


\[\textit{spherical disproportion} = \frac{P}{2\sqrt{\pi A}}\]

Spherical Disproportion is the ratio of the perimeter of the tumor region to the perimeter of a circle with
the same surface area as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value range
is \(spherical\ disproportion \geq 1\), with a value of 1 indicating a perfect sphere.


Note

This feature is correlated to Sphericity.
Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
individual features are specified (enabling ‘all’ features), but will be enabled when individual features are
specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
features.








	
getMaximumDiameterFeatureValue()[source]

	7. Maximum 2D diameter

Maximum diameter is defined as the largest pairwise Euclidean distance between tumor surface mesh
vertices.






	
getMajorAxisLengthFeatureValue()[source]

	8. Major Axis Length


\[\textit{major axis} = 4 \sqrt{\lambda_{major}}\]

This feature yield the largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
principal component \(\lambda_{major}\).

The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getMinorAxisLengthFeatureValue()[source]

	9. Minor Axis Length


\[\textit{minor axis} = 4 \sqrt{\lambda_{minor}}\]

This feature yield the second-largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
principal component \(\lambda_{minor}\).

The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.






	
getElongationFeatureValue()[source]

	10. Elongation

Elongation shows the relationship between the two largest principal components in the ROI shape.
For computational reasons, this feature is defined as the inverse of true elongation.


\[\textit{elongation} = \sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}\]

Here, \(\lambda_{\text{major}}\) and \(\lambda_{\text{minor}}\) are the lengths of the largest and second
largest principal component axes. The values range between 1 (where the cross section through the first and second
largest principal moments is circle-like (non-elongated)) and 0 (where the object is a maximally elongated: i.e. a 1
dimensional line).

The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
It therefore takes spacing into account, but does not make use of the shape mesh.











Gray Level Co-occurrence Matrix (GLCM) Features


	
class radiomics.glcm.RadiomicsGLCM(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Co-occurrence Matrix (GLCM) of size \(N_g \times N_g\) describes the second-order joint probability
function of an image region constrained by the mask and is defined as \(\textbf{P}(i,j|\delta,\theta)\).
The \((i,j)^{\text{th}}\) element of this matrix represents the number of times the combination of
levels \(i\) and \(j\) occur in two pixels in the image, that are separated by a distance of \(\delta\)
pixels along angle \(\theta\).
The distance \(\delta\) from the center voxel is defined as the distance according to the infinity norm.
For \(\delta=1\), this results in 2 neighbors for each of 13 angles in 3D (26-connectivity) and for
\(\delta=2\) a 98-connectivity (49 unique angles).

Note that pyradiomics by default computes symmetrical GLCM!

As a two dimensional example, let the following matrix \(\textbf{I}\) represent a 5x5 image, having 5 discrete
grey levels:


\[\begin{split}\textbf{I} = \begin{bmatrix}
1 & 2 & 5 & 2 & 3\\
3 & 2 & 1 & 3 & 1\\
1 & 3 & 5 & 5 & 2\\
1 & 1 & 1 & 1 & 2\\
1 & 2 & 4 & 3 & 5 \end{bmatrix}\end{split}\]

For distance \(\delta = 1\) (considering pixels with a distance of 1 pixel from each other)
and angle \(\theta=0^\circ\) (horizontal plane, i.e. voxels to the left and right of the center voxel),
the following symmetrical GLCM is obtained:


\[\begin{split}\textbf{P} = \begin{bmatrix}
6 & 4 & 3 & 0 & 0\\
4 & 0 & 2 & 1 & 3\\
3 & 2 & 0 & 1 & 2\\
0 & 1 & 1 & 0 & 0\\
0 & 3 & 2 & 0 & 2 \end{bmatrix}\end{split}\]

Let:


	\(\epsilon\) be an arbitrarily small positive number (\(\approx 2.2\times10^{-16}\))


	\(\textbf{P}(i,j)\) be the co-occurence matrix for an arbitrary \(\delta\) and \(\theta\)


	\(p(i,j)\) be the normalized co-occurence matrix and equal to
\(\frac{\textbf{P}(i,j)}{\sum{\textbf{P}(i,j)}}\)


	\(N_g\) be the number of discrete intensity levels in the image


	\(p_x(i) = \sum^{N_g}_{j=1}{P(i,j)}\) be the marginal row probabilities


	\(p_y(j) = \sum^{N_g}_{i=1}{P(i,j)}\) be the marginal column probabilities


	\(\mu_x\) be the mean gray level intensity of \(p_x\) and defined as
\(\mu_x = \displaystyle\sum^{N_g}_{i=1}{p_x(i)i}\)


	\(\mu_y\) be the mean gray level intensity of \(p_y\) and defined as
\(\mu_y = \displaystyle\sum^{N_g}_{j=1}{p_y(j)j}\)


	\(\sigma_x\) be the standard deviation of \(p_x\)


	\(\sigma_y\) be the standard deviation of \(p_y\)


	\(p_{x+y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }i+j=k,\text{ and }k=2,3,\dots,2N_g\)


	\(p_{x-y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }|i-j|=k,\text{ and }k=0,1,\dots,N_g-1\)


	\(HX =  -\sum^{N_g}_{i=1}{p_x(i)\log_2\big(p_x(i)+\epsilon\big)}\) be the entropy of \(p_x\)


	\(HY =  -\sum^{N_g}_{j=1}{p_y(j)\log_2\big(p_y(j)+\epsilon\big)}\) be the entropy of \(p_y\)


	\(HXY =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p(i,j)+\epsilon\big)}\) be the entropy of
\(p(i,j)\)


	\(HXY1 =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}\)


	\(HXY2 =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p_x(i)p_y(j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}\)




By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of these
values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W and
then summed and normalised. Features are then calculated on the resultant matrix.
Weighting factor W is calculated for the distance between neighbouring voxels by:

\(W = e^{-\|d\|^2}\), where d is the distance for the associated angle according
to the norm specified in setting ‘weightingNorm’.

The following class specific settings are possible:


	distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.


	symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two directions per angle,
which results in a symmetrical matrix, with equal distributions for \(i\) and \(j\). A symmetrical matrix
corresponds to the GLCM as defined by Haralick et al.


	weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:


	‘manhattan’: first order norm


	‘euclidean’: second order norm


	‘infinity’: infinity norm.


	‘no_weighting’: GLCMs are weighted by factor 1 and summed


	None: Applies no weighting, mean of values calculated on separate matrices is returned.




In case of other values, an warning is logged and option ‘no_weighting’ is used.





References


	Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification;
IEEE Transactions on Systems, Man and Cybernetics; 1973(3), p610-621


	https://en.wikipedia.org/wiki/Co-occurrence_matrix


	http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm





	
getAutocorrelationFeatureValue()[source]

	1. Autocorrelation


\[\textit{autocorrelation} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)ij}\]

Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.






	
getJointAverageFeatureValue()[source]

	2. Joint Average


\[\textit{joint average} = \mu_x = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)i}\]

Returns the mean gray level intensity of the \(i\) distribution.


Warning

As this formula represents the average of the distribution of \(i\), it is independent from the
distribution of \(j\). Therefore, only use this formula if the GLCM is symmetrical, where
\(p_x(i) = p_y(j) \text{, where } i = j\).








	
getClusterProminenceFeatureValue()[source]

	3. Cluster Prominence


\[\textit{cluster prominence} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big( i+j-\mu_x-\mu_y\big)^4p(i,j)}\]

Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies more asymmetry
about the mean while a lower value indicates a peak near the mean value and less variation about the mean.






	
getClusterShadeFeatureValue()[source]

	4. Cluster Shade


\[\textit{cluster shade} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big(i+j-\mu_x-\mu_y\big)^3p(i,j)}\]

Cluster Shade is a measure of the skewness and uniformity of the GLCM.
A higher cluster shade implies greater asymmetry about the mean.






	
getClusterTendencyFeatureValue()[source]

	5. Cluster Tendency


\[\textit{cluster tendency} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big(i+j-\mu_x-\mu_y\big)^2p(i,j)}\]

Cluster Tendency is a measure of groupings of voxels with similar gray-level values.






	
getContrastFeatureValue()[source]

	6. Contrast


\[\textit{contrast} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-j)^2p(i,j)}\]

Contrast is a measure of the local intensity variation, favoring values away from the diagonal \((i = j)\). A
larger value correlates with a greater disparity in intensity values among neighboring voxels.






	
getCorrelationFeatureValue()[source]

	7. Correlation


\[\textit{correlation} = \frac{\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)ij-\mu_x\mu_y}}{\sigma_x(i)\sigma_y(j)}\]

Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the
linear dependency of gray level values to their respective voxels in the GLCM.


Note

When there is only 1 discreet gray value in the ROI (flat region), \(\sigma_x\) and \(\sigma_y\) will be
0. In this case, an arbitrary value of 1 is returned instead. This is assessed on a per-angle basis.








	
getDifferenceAverageFeatureValue()[source]

	8. Difference Average


\[\textit{difference average} = \displaystyle\sum^{N_g-1}_{k=0}{kp_{x-y}(k)}\]

Difference Average measures the relationship between occurrences of pairs
with similar intensity values and occurrences of pairs with differing intensity
values.






	
getDifferenceEntropyFeatureValue()[source]

	9. Difference Entropy


\[\textit{difference entropy} = \displaystyle\sum^{N_g-1}_{k=0}{p_{x-y}(k)\log_2\big(p_{x-y}(k)+\epsilon\big)}\]

Difference Entropy is a measure of the randomness/variability
in neighborhood intensity value differences.






	
getDifferenceVarianceFeatureValue()[source]

	10. Difference Variance


\[\textit{difference variance} = \displaystyle\sum^{N_g-1}_{k=0}{(k-DA)^2p_{x-y}(k)}\]

Difference Variance is a measure of heterogeneity that places higher weights on
differing intensity level pairs that deviate more from the mean.






	
getDissimilarityFeatureValue()[source]

	DEPRECATED. Dissimilarity


\[\textit{dissimilarity} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{|i-j|p(i,j)}\]


Warning

This feature has been deprecated, as it is mathematically equal to Difference Average
getDifferenceAverageFeatureValue().
See here for the proof. Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features








	
getJointEnergyFeatureValue()[source]

	11. Joint Energy


\[\textit{joint energy} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\big(p(i,j)\big)^2}\]

Energy is a measure of homogeneous patterns
in the image. A greater Energy implies that there are more instances
of intensity value pairs in the image that neighbor each other at
higher frequencies.


Note

Defined by IBSI as Angular Second Moment.








	
getJointEntropyFeatureValue()[source]

	12. Joint Entropy


\[\textit{joint entropy} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{p(i,j)\log_2\big(p(i,j)+\epsilon\big)}\]

Joint entropy is a measure of the randomness/variability in neighborhood intensity values.


Note

Defined by IBSI as Joint entropy








	
getHomogeneity1FeatureValue()[source]

	DEPRECATED. Homogeneity 1


\[\textit{homogeneity 1} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|}}\]


Warning

This feature has been deprecated, as it is mathematically equal to Inverse Difference
getIdFeatureValue(). Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features








	
getHomogeneity2FeatureValue()[source]

	DEPRECATED. Homogeneity 2


\[\textit{homogeneity 2} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|^2}}\]


Warning

This feature has been deprecated, as it is mathematically equal to Inverse Difference Moment
getIdmFeatureValue(). Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features








	
getImc1FeatureValue()[source]

	13. Informational Measure of Correlation (IMC) 1


\[\textit{IMC 1} = \displaystyle\frac{HXY-HXY1}{\max\{HX,HY\}}\]

IMC1 assesses the correlation between the probability distributions of \(i\) and \(j\) (quantifying the
complexity of the texture), using mutual information I(x, y):


\[ \begin{align}\begin{aligned}I(i, j) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(\frac{p(i,j)}{p_x(i)p_y(j)}\big)}\\        = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\big(\log_2 (p(i,j)) - \log_2 (p_x(i)p_y(j))\big)}\\        = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p(i,j)\big)} -
          \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p_x(i)p_y(j)\big)}\\        = -HXY + HXY1\end{aligned}\end{align} \]

However, in this formula, the numerator is defined as HXY - HXY1 (i.e. \(-I(x, y)\)), and is
therefore \(\leq 0\). This reflects how this feature is defined in the original Haralick paper.

In the case where the distributions are independent, there is no mutual information and the result will therefore be
0. In the case of uniform distribution with complete dependence, mutual information will be equal to
\(\log_2(N_g)\).

Finally, \(HXY - HXY1\) is divided by the maximum of the 2 marginal entropies, where in the latter case of
complete dependence (not necessarily uniform; low complexity) it will result in \(IMC1 = -1\), as
\(HX = HY = I(i, j)\).


Note

In the case where both HX and HY are 0 (as is the case in a flat region), an arbitrary value of 0 is returned to
prevent a division by 0. This is done on a per-angle basis (i.e. prior to any averaging).








	
getImc2FeatureValue()[source]

	14. Informational Measure of Correlation (IMC) 2


\[\textit{IMC 2} = \displaystyle\sqrt{1-e^{-2(HXY2-HXY)}}\]

IMC2 also assesses the correlation between the probability distributions of \(i\) and \(j\) (quantifying the
complexity of the texture). Of interest is to note that \(HXY1 = HXY2\) and that \(HXY2 - HXY \geq 0\)
represents the mutual information of the 2 distributions. Therefore, the range of IMC2 = [0, 1), with 0 representing
the case of 2 independent distributions (no mutual information) and the maximum value representing the case of 2
fully dependent and uniform distributions (maximal mutual information, equal to \(\log_2(N_g)\)). In this latter
case, the maximum value is then equal to \(\displaystyle\sqrt{1-e^{-2\log_2(N_g)}}\), approaching 1.


Note

Due to machine precision errors, it is possble that HXY > HXY2, which would result in returning complex numbers.
In these cases, a value of 0 is returned for IMC2. This is done on a per-angle basis (i.e. prior to any
averaging).








	
getIdmFeatureValue()[source]

	15. Inverse Difference Moment (IDM)


\[\textit{IDM} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k^2}}\]

IDM (a.k.a Homogeneity 2) is a measure of the local
homogeneity of an image. IDM weights are the inverse of the Contrast
weights (decreasing exponentially from the diagonal i=j in the GLCM).






	
getMCCFeatureValue()[source]

	16. Maximal Correlation Coefficient (MCC)


\[ \begin{align}\begin{aligned}\textit{MCC} = \sqrt{\text{second largest eigenvalue of Q}}\\Q(i, j) = \displaystyle\sum^{N_g}_{k=0}{\frac{p(i,k)p(j, k)}{p_x(i)p_y(k)}}\end{aligned}\end{align} \]

The Maximal Correlation Coefficient is a measure of complexity of the texture and \(0 \leq MCC \leq 1\).

In case of a flat region, each GLCM matrix has shape (1, 1), resulting in just 1 eigenvalue. In this case, an
arbitrary value of 1 is returned.






	
getIdmnFeatureValue()[source]

	17. Inverse Difference Moment Normalized (IDMN)


\[\textit{IDMN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k^2}{N_g^2}\right)} }\]

IDMN (inverse difference moment normalized)  is a measure of the local
homogeneity of an image. IDMN weights are the inverse of the Contrast
weights (decreasing exponentially from the diagonal \(i=j\) in the GLCM).
Unlike Homogeneity2, IDMN normalizes the square of the difference between
neighboring intensity values by dividing over the square of the total
number of discrete intensity values.






	
getIdFeatureValue()[source]

	18. Inverse Difference (ID)


\[\textit{ID} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k}}\]

ID (a.k.a. Homogeneity 1) is another measure of the local homogeneity of an image.
With more uniform gray levels, the denominator will remain low, resulting in a higher overall value.






	
getIdnFeatureValue()[source]

	19. Inverse Difference Normalized (IDN)


\[\textit{IDN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k}{N_g}\right)} }\]

IDN (inverse difference normalized) is another measure of the local
homogeneity of an image. Unlike Homogeneity1, IDN normalizes the difference
between the neighboring intensity values by dividing over the total number
of discrete intensity values.






	
getInverseVarianceFeatureValue()[source]

	20. Inverse Variance


\[\textit{inverse variance} = \displaystyle\sum^{N_g-1}_{k=1}{\frac{p_{x-y}(k)}{k^2}}\]

Note that \(k=0\) is skipped, as this would result in a division by 0.






	
getMaximumProbabilityFeatureValue()[source]

	21. Maximum Probability


\[\textit{maximum probability} = \max\big(p(i,j)\big)\]

Maximum Probability is occurrences of the most predominant pair of
neighboring intensity values.


Note

Defined by IBSI as Joint maximum








	
getSumAverageFeatureValue()[source]

	22. Sum Average


\[\textit{sum average} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)k}\]

Sum Average measures the relationship between occurrences of pairs
with lower intensity values and occurrences of pairs with higher intensity
values.


Warning

When GLCM is symmetrical, \(\mu_x = \mu_y\), and therefore \(\text{Sum Average} = \mu_x + \mu_y =
2 \mu_x = 2 * Joint Average\). See formulas (4.), (5.) and (6.) defined
here for the proof that \(\text{Sum Average} = \mu_x + \mu_y\).
In the default parameter files provided in the examples/exampleSettings, this feature has been disabled.








	
getSumVarianceFeatureValue()[source]

	DEPRECATED. Sum Variance


\[\textit{sum variance} = \displaystyle\sum^{2N_g}_{k=2}{(k-SA)^2p_{x+y}(k)}\]


Warning

This feature has been deprecated, as it is mathematically equal to Cluster Tendency
getClusterTendencyFeatureValue().
See here for the proof. Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features








	
getSumEntropyFeatureValue()[source]

	23. Sum Entropy


\[\textit{sum entropy} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)\log_2\big(p_{x+y}(k)+\epsilon\big)}\]

Sum Entropy is a sum of neighborhood intensity value differences.






	
getSumSquaresFeatureValue()[source]

	24. Sum of Squares


\[\textit{sum squares} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-\mu_x)^2p(i,j)}\]

Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs
about the mean intensity level in the GLCM.


Warning

This formula represents the variance of the distribution of \(i\) and is independent from the distribution
of \(j\). Therefore, only use this formula if the GLCM is symmetrical, where
\(p_x(i) = p_y(j) \text{, where } i = j\)




Note

Defined by IBSI as Joint Variance













Gray Level Size Zone Matrix (GLSZM) Features


	
class radiomics.glszm.RadiomicsGLSZM(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as a the number
of connected voxels that share the same gray level intensity. A voxel is considered connected if the distance is 1
according to the infinity norm (26-connected region in a 3D, 8-connected region in 2D).
In a gray level size zone matrix \(P(i,j)\) the \((i,j)^{\text{th}}\) element equals the number of zones
with gray level \(i\) and size \(j\) appear in image. Contrary to GLCM and GLRLM, the GLSZM is rotation
independent, with only one matrix calculated for all directions in the ROI.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:


\[\begin{split}\textbf{I} = \begin{bmatrix}
5 & 2 & 5 & 4 & 4\\
3 & 3 & 3 & 1 & 3\\
2 & 1 & 1 & 1 & 3\\
4 & 2 & 2 & 2 & 3\\
3 & 5 & 3 & 3 & 2 \end{bmatrix}\end{split}\]

The GLSZM then becomes:


\[\begin{split}\textbf{P} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0\\
1 & 0 & 0 & 0 & 1\\
1 & 0 & 1 & 0 & 1\\
1 & 1 & 0 & 0 & 0\\
3 & 0 & 0 & 0 & 0 \end{bmatrix}\end{split}\]

Let:


	\(N_g\) be the number of discreet intensity values in the image


	\(N_s\) be the number of discreet zone sizes in the image


	\(N_p\) be the number of voxels in the image


	\(N_z\) be the number of zones in the ROI, which is equal to \(\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}
{\textbf{P}(i,j)}\) and \(1 \leq N_z \leq N_p\)


	\(\textbf{P}(i,j)\) be the size zone matrix


	\(p(i,j)\) be the normalized size zone matrix, defined as \(p(i,j) = \frac{\textbf{P}(i,j)}{N_z}\)





Note

The mathematical formulas that define the GLSZM features correspond to the definitions of features extracted from
the GLRLM.



References


	Guillaume Thibault; Bernard Fertil; Claire Navarro; Sandrine Pereira; Pierre Cau; Nicolas Levy; Jean Sequeira;
Jean-Luc Mari (2009). “Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification”.
Pattern Recognition and Information Processing (PRIP): 140-145.


	https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix





	
getSmallAreaEmphasisFeatureValue()[source]

	1. Small Area Emphasis (SAE)


\[\textit{SAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{j^2}}}{N_z}\]

SAE is a measure of the distribution of small size zones, with a greater value indicative of more smaller size zones
and more fine textures.






	
getLargeAreaEmphasisFeatureValue()[source]

	2. Large Area Emphasis (LAE)


\[\textit{LAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)j^2}}{N_z}\]

LAE is a measure of the distribution of large area size zones, with a greater value indicative of more larger size
zones and more coarse textures.






	
getGrayLevelNonUniformityFeatureValue()[source]

	3. Gray Level Non-Uniformity (GLN)


\[\textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z}\]

GLN measures the variability of gray-level intensity values in the image, with a lower value indicating more
homogeneity in intensity values.






	
getGrayLevelNonUniformityNormalizedFeatureValue()[source]

	4. Gray Level Non-Uniformity Normalized (GLNN)


\[\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}\]

GLNN measures the variability of gray-level intensity values in the image, with a lower value indicating a greater
similarity in intensity values. This is the normalized version of the GLN formula.






	
getSizeZoneNonUniformityFeatureValue()[source]

	5. Size-Zone Non-Uniformity (SZN)


\[\textit{SZN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z}\]

SZN measures the variability of size zone volumes in the image, with a lower value indicating more homogeneity in
size zone volumes.






	
getSizeZoneNonUniformityNormalizedFeatureValue()[source]

	6. Size-Zone Non-Uniformity Normalized (SZNN)


\[\textit{SZNN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}\]

SZNN measures the variability of size zone volumes throughout the image, with a lower value indicating more
homogeneity among zone size volumes in the image. This is the normalized version of the SZN formula.






	
getZonePercentageFeatureValue()[source]

	7. Zone Percentage (ZP)


\[\textit{ZP} = \frac{N_z}{N_p}\]

ZP measures the coarseness of the texture by taking the ratio of number of zones and number of voxels in the ROI.

Values are in range \(\frac{1}{N_p} \leq ZP \leq 1\), with higher values indicating a larger portion of the ROI
consists of small zones (indicates a more fine texture).






	
getGrayLevelVarianceFeatureValue()[source]

	8. Gray Level Variance (GLV)


\[\textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(i - \mu)^2}\]

Here, \(\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)i}\)

GLV measures the variance in gray level intensities for the zones.






	
getZoneVarianceFeatureValue()[source]

	9. Zone Variance (ZV)


\[\textit{ZV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(j - \mu)^2}\]

Here, \(\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)j}\)

ZV measures the variance in zone size volumes for the zones.






	
getZoneEntropyFeatureValue()[source]

	10. Zone Entropy (ZE)


\[\textit{ZE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)\log_{2}(p(i,j)+\epsilon)}\]

Here, \(\epsilon\) is an arbitrarily small positive number (\(\approx 2.2\times10^{-16}\)).

ZE measures the uncertainty/randomness in the distribution of zone sizes and gray levels. A higher value indicates
more heterogeneneity in the texture patterns.






	
getLowGrayLevelZoneEmphasisFeatureValue()[source]

	11. Low Gray Level Zone Emphasis (LGLZE)


\[\textit{LGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}\]

LGLZE measures the distribution of lower gray-level size zones, with a higher value indicating a greater proportion
of lower gray-level values and size zones in the image.






	
getHighGrayLevelZoneEmphasisFeatureValue()[source]

	12. High Gray Level Zone Emphasis (HGLZE)


\[\textit{HGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2}}{N_z}\]

HGLZE measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion
of higher gray-level values and size zones in the image.






	
getSmallAreaLowGrayLevelEmphasisFeatureValue()[source]

	13. Small Area Low Gray Level Emphasis (SALGLE)


\[\textit{SALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2j^2}}}{N_z}\]

SALGLE measures the proportion in the image of the joint distribution of smaller size zones with lower gray-level
values.






	
getSmallAreaHighGrayLevelEmphasisFeatureValue()[source]

	14. Small Area High Gray Level Emphasis (SAHGLE)


\[\textit{SAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)i^2}{j^2}}}{N_z}\]

SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with higher gray-level
values.






	
getLargeAreaLowGrayLevelEmphasisFeatureValue()[source]

	15. Large Area Low Gray Level Emphasis (LALGLE)


\[\textit{LALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)j^2}{i^2}}}{N_z}\]

LALGLE measures the proportion in the image of the joint distribution of larger size zones with lower gray-level
values.






	
getLargeAreaHighGrayLevelEmphasisFeatureValue()[source]

	16. Large Area High Gray Level Emphasis (LAHGLE)


\[\textit{LAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2j^2}}{N_z}\]

LAHGLE measures the proportion in the image of the joint distribution of larger size zones with higher gray-level
values.











Gray Level Run Length Matrix (GLRLM) Features


	
class radiomics.glrlm.RadiomicsGLRLM(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number of
pixels, of consecutive pixels that have the same gray level value. In a gray level run length matrix
\(\textbf{P}(i,j|\theta)\), the \((i,j)^{\text{th}}\) element describes the number of runs with gray level
\(i\) and length \(j\) occur in the image (ROI) along angle \(\theta\).

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:


\[\begin{split}\textbf{I} = \begin{bmatrix}
5 & 2 & 5 & 4 & 4\\
3 & 3 & 3 & 1 & 3\\
2 & 1 & 1 & 1 & 3\\
4 & 2 & 2 & 2 & 3\\
3 & 5 & 3 & 3 & 2 \end{bmatrix}\end{split}\]

The GLRLM for \(\theta = 0\), where 0 degrees is the horizontal direction, then becomes:


\[\begin{split}\textbf{P} = \begin{bmatrix}
1 & 0 & 1 & 0 & 0\\
3 & 0 & 1 & 0 & 0\\
4 & 1 & 1 & 0 & 0\\
1 & 1 & 0 & 0 & 0\\
3 & 0 & 0 & 0 & 0 \end{bmatrix}\end{split}\]

Let:


	\(N_g\) be the number of discreet intensity values in the image


	\(N_r\) be the number of discreet run lengths in the image


	\(N_p\) be the number of voxels in the image


	\(N_r(\theta)\) be the number of runs in the image along angle \(\theta\), which is equal to
\(\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\) and \(1 \leq N_r(\theta) \leq N_p\)


	\(\textbf{P}(i,j|\theta)\) be the run length matrix for an arbitrary direction \(\theta\)


	\(p(i,j|\theta)\) be the normalized run length matrix, defined as \(p(i,j|\theta) =
\frac{\textbf{P}(i,j|\theta)}{N_r(\theta)}\)




By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean of these
values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between neighbouring voxels
and then summed and normalised. Features are then calculated on the resultant matrix. The distance between
neighbouring voxels is calculated for each angle using the norm specified in ‘weightingNorm’.

The following class specific settings are possible:


	weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:


	‘manhattan’: first order norm


	‘euclidean’: second order norm


	‘infinity’: infinity norm.


	‘no_weighting’: GLCMs are weighted by factor 1 and summed


	None: Applies no weighting, mean of values calculated on separate matrices is returned.




In case of other values, an warning is logged and option ‘no_weighting’ is used.
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getShortRunEmphasisFeatureValue()[source]

	1. Short Run Emphasis (SRE)


\[\textit{SRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{j^2}}}{N_r(\theta)}\]

SRE is a measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths
and more fine textural textures.






	
getLongRunEmphasisFeatureValue()[source]

	2. Long Run Emphasis (LRE)


\[\textit{LRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)j^2}}{N_r(\theta)}\]

LRE is a measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and
more coarse structural textures.






	
getGrayLevelNonUniformityFeatureValue()[source]

	3. Gray Level Non-Uniformity (GLN)


\[\textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}\]

GLN measures the similarity of gray-level intensity values in the image, where a lower GLN value correlates with a
greater similarity in intensity values.






	
getGrayLevelNonUniformityNormalizedFeatureValue()[source]

	4. Gray Level Non-Uniformity Normalized (GLNN)


\[\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}\]

GLNN measures the similarity of gray-level intensity values in the image, where a lower GLNN value correlates with a
greater similarity in intensity values. This is the normalized version of the GLN formula.






	
getRunLengthNonUniformityFeatureValue()[source]

	5. Run Length Non-Uniformity (RLN)


\[\textit{RLN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}\]

RLN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
among run lengths in the image.






	
getRunLengthNonUniformityNormalizedFeatureValue()[source]

	6. Run Length Non-Uniformity Normalized (RLNN)


\[\textit{RLNN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}\]

RLNN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
among run lengths in the image. This is the normalized version of the RLN formula.






	
getRunPercentageFeatureValue()[source]

	7. Run Percentage (RP)


\[\textit{RP} = {\frac{N_r(\theta)}{N_p}}\]

RP measures the coarseness of the texture by taking the ratio of number of runs and number of voxels in the ROI.

Values are in range \(\frac{1}{N_p} \leq RP \leq 1\), with higher values indicating a larger portion of the ROI
consists of short runs (indicates a more fine texture).


Note

Note that when weighting is applied and matrices are merged before calculation, \(N_p\) is multiplied by
\(n\) number of matrices merged to ensure correct normalization (as each voxel is considered \(n\) times)








	
getGrayLevelVarianceFeatureValue()[source]

	8. Gray Level Variance (GLV)


\[\textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(i - \mu)^2}\]

Here, \(\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)i}\)

GLV measures the variance in gray level intensity for the runs.






	
getRunVarianceFeatureValue()[source]

	9. Run Variance (RV)


\[\textit{RV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(j - \mu)^2}\]

Here, \(\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)j}\)

RV is a measure of the variance in runs for the run lengths.






	
getRunEntropyFeatureValue()[source]

	10. Run Entropy (RE)


\[\textit{RE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}
{p(i,j|\theta)\log_{2}(p(i,j|\theta)+\epsilon)}\]

Here, \(\epsilon\) is an arbitrarily small positive number (\(\approx 2.2\times10^{-16}\)).

RE measures the uncertainty/randomness in the distribution of run lengths and gray levels. A higher value indicates
more heterogeneity in the texture patterns.






	
getLowGrayLevelRunEmphasisFeatureValue()[source]

	11. Low Gray Level Run Emphasis (LGLRE)


\[\textit{LGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{i^2}}}{N_r(\theta)}\]

LGLRE measures the distribution of low gray-level values, with a higher value indicating a greater concentration of
low gray-level values in the image.






	
getHighGrayLevelRunEmphasisFeatureValue()[source]

	12. High Gray Level Run Emphasis (HGLRE)


\[\textit{HGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)i^2}}{N_r(\theta)}\]

HGLRE measures the distribution of the higher gray-level values, with a higher value indicating a greater
concentration of high gray-level values in the image.






	
getShortRunLowGrayLevelEmphasisFeatureValue()[source]

	13. Short Run Low Gray Level Emphasis (SRLGLE)


\[\textit{SRLGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{i^2j^2}}}{N_r(\theta)}\]

SRLGLE measures the joint distribution of shorter run lengths with lower gray-level values.






	
getShortRunHighGrayLevelEmphasisFeatureValue()[source]

	14. Short Run High Gray Level Emphasis (SRHGLE)


\[\textit{SRHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)i^2}{j^2}}}{N_r(\theta)}\]

SRHGLE measures the joint distribution of shorter run lengths with higher gray-level values.






	
getLongRunLowGrayLevelEmphasisFeatureValue()[source]

	15. Long Run Low Gray Level Emphasis (LRLGLE)


\[\textit{LRLGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)j^2}{i^2}}}{N_r(\theta)}\]

LRLGLRE measures the joint distribution of long run lengths with lower gray-level values.






	
getLongRunHighGrayLevelEmphasisFeatureValue()[source]

	16. Long Run High Gray Level Emphasis (LRHGLE)


\[\textit{LRHGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)i^2j^2}}{N_r(\theta)}\]

LRHGLRE measures the joint distribution of long run lengths with higher gray-level values.











Neighbouring Gray Tone Difference Matrix (NGTDM) Features


	
class radiomics.ngtdm.RadiomicsNGTDM(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray value and the average gray value
of its neighbours within distance \(\delta\). The sum of absolute differences for gray level \(i\) is stored in the matrix.
Let \(\textbf{X}_{gl}\) be a set of segmented voxels and \(x_{gl}(j_x,j_y,j_z) \in \textbf{X}_{gl}\) be the gray level of a voxel at postion
\((j_x,j_y,j_z)\), then the average gray level of the neigbourhood is:


\[\begin{split}\bar{A}_i &= \bar{A}(j_x, j_y, j_z) \\
&= \displaystyle\frac{1}{W} \displaystyle\sum_{k_x=-\delta}^{\delta}\displaystyle\sum_{k_y=-\delta}^{\delta}
\displaystyle\sum_{k_z=-\delta}^{\delta}{x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z)}, \\
&\mbox{where }(k_x,k_y,k_z)\neq(0,0,0)\mbox{ and } x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z) \in \textbf{X}_{gl}\end{split}\]

Here, \(W\) is the number of voxels in the neighbourhood that are also in \(\textbf{X}_{gl}\).

As a two dimensional example, let the following matrix \(\textbf{I}\) represent a 4x4 image,
having 5 discrete grey levels, but no voxels with gray level 4:


\[\begin{split}\textbf{I} = \begin{bmatrix}
1 & 2 & 5 & 2\\
3 & 5 & 1 & 3\\
1 & 3 & 5 & 5\\
3 & 1 & 1 & 1\end{bmatrix}\end{split}\]

The following NGTDM can be obtained:


\[\begin{split}\begin{array}{cccc}
i & n_i & p_i & s_i\\
\hline
1 & 6 & 0.375 & 13.35\\
2 & 2 & 0.125 & 2.00\\
3 & 4 & 0.25  & 2.63\\
4 & 0 & 0.00  & 0.00\\
5 & 4 & 0.25  & 10.075\end{array}\end{split}\]

6 pixels have gray level 1, therefore:

\(s_1 = |1-10/3| + |1-30/8| + |1-15/5| + |1-13/5| + |1-15/5| + |1-11/3| = 13.35\)

For gray level 2, there are 2 pixels, therefore:

\(s_2 = |2-15/5| + |2-9/3| = 2\)

Similar for gray values 3 and 5:

\(s_3 = |3-12/5| + |3-18/5| + |3-20/8| + |3-5/3| = 3.03 \\
s_5 = |5-14/5| + |5-18/5| + |5-20/8| + |5-11/5| = 10.075\)

Let:

\(n_i\) be the number of voxels in \(X_{gl}\) with gray level \(i\)

\(N_{v,p}\) be the total number of voxels in \(X_{gl}\) and equal to \(\sum{n_i}\) (i.e. the number of voxels
with a valid region; at least 1 neighbor). \(N_{v,p} \leq N_p\), where \(N_p\) is the total number of voxels in the ROI.

\(p_i\) be the gray level probability and equal to \(n_i/N_v\)

\(s_i = \left\{ {\begin{array} {rcl}
\sum^{n_i}{|i-\bar{A}_i|} & \mbox{for} & n_i \neq 0 \\
0 & \mbox{for} & n_i = 0 \end{array}}\right.\)
be the sum of absolute differences for gray level \(i\)

\(N_g\) be the number of discreet gray levels

\(N_{g,p}\) be the number of gray levels where \(p_i \neq 0\)

The following class specific settings are possible:


	distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.




References


	Amadasun M, King R; Textural features corresponding to textural properties;
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getCoarsenessFeatureValue()[source]

	Calculate and return the coarseness.

\(Coarseness = \frac{1}{\sum^{N_g}_{i=1}{p_{i}s_{i}}}\)

Coarseness is a measure of average difference between the center voxel and its neighbourhood and is an indication
of the spatial rate of change. A higher value indicates a lower spatial change rate and a locally more uniform texture.

N.B. \(\sum^{N_g}_{i=1}{p_{i}s_{i}}\) potentially evaluates to 0 (in case of a completely homogeneous image).
If this is the case, an arbitrary value of \(10^6\) is returned.






	
getContrastFeatureValue()[source]

	Calculate and return the contrast.

\(Contrast = \left(\frac{1}{N_{g,p}(N_{g,p}-1)}\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p_{i}p_{j}(i-j)^2}\right)
\left(\frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i=1}{s_i}\right)\text{, where }p_i \neq 0, p_j \neq 0\)

Contrast is a measure of the spatial intensity change, but is also dependent on the overall gray level dynamic range.
Contrast is high when both the dynamic range and the spatial change rate are high, i.e. an image with a large range
of gray levels, with large changes between voxels and their neighbourhood.

N.B. In case of a completely homogeneous image, \(N_{g,p} = 1\), which would result in a division by 0. In this
case, an arbitray value of 0 is returned.






	
getBusynessFeatureValue()[source]

	Calculate and return the busyness.

\(Busyness = \frac{\sum^{N_g}_{i = 1}{p_{i}s_{i}}}{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{|ip_i - jp_j|}}\text{, where }p_i \neq 0, p_j \neq 0\)

A measure of the change from a pixel to its neighbour. A high value for busyness indicates a ‘busy’ image, with rapid
changes of intensity between pixels and its neighbourhood.

N.B. if \(N_{g,p} = 1\), then \(busyness = \frac{0}{0}\). If this is the case, 0 is returned, as it concerns
a fully homogeneous region.






	
getComplexityFeatureValue()[source]

	Calculate and return the complexity.

\(Complexity = \frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i = 1}\displaystyle\sum^{N_g}_{j = 1}{|i - j|
\frac{p_{i}s_{i} + p_{j}s_{j}}{p_i + p_j}}\text{, where }p_i \neq 0, p_j \neq 0\)

An image is considered complex when there are many primitive components in the image, i.e. the image is non-uniform
and there are many rapid changes in gray level intensity.






	
getStrengthFeatureValue()[source]

	Calculate and return the strength.

\(Strength = \frac{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{(p_i + p_j)(i-j)^2}}{\sum^{N_g}_{i = 1}{s_i}}\text{, where }p_i \neq 0, p_j \neq 0\)

Strength is a measure of the primitives in an image. Its value is high when the primitives are easily defined and
visible, i.e. an image with slow change in intensity but more large coarse differences in gray level intensities.

N.B. \(\sum^{N_g}_{i=1}{s_i}\) potentially evaluates to 0 (in case of a completely homogeneous image).
If this is the case, 0 is returned.











Gray Level Dependence Matrix (GLDM) Features


	
class radiomics.gldm.RadiomicsGLDM(inputImage, inputMask, **kwargs)[source]

	Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an image.
A gray level dependency is defined as a the number of connected voxels within distance \(\delta\) that are
dependent on the center voxel.
A neighbouring voxel with gray level \(j\) is considered dependent on center voxel with gray level \(i\)
if \(|i-j|\le\alpha\). In a gray level dependence matrix \(\textbf{P}(i,j)\) the \((i,j)\)th
element describes the number of times a voxel with gray level \(i\) with \(j\) dependent voxels
in its neighbourhood appears in image.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:


\[\begin{split}\textbf{I} = \begin{bmatrix}
5 & 2 & 5 & 4 & 4\\
3 & 3 & 3 & 1 & 3\\
2 & 1 & 1 & 1 & 3\\
4 & 2 & 2 & 2 & 3\\
3 & 5 & 3 & 3 & 2 \end{bmatrix}\end{split}\]

For \(\alpha=0\) and \(\delta = 1\), the GLDM then becomes:


\[\begin{split}\textbf{P} = \begin{bmatrix}
0 & 1 & 2 & 1 \\
1 & 2 & 3 & 0 \\
1 & 4 & 4 & 0 \\
1 & 2 & 0 & 0 \\
3 & 0 & 0 & 0 \end{bmatrix}\end{split}\]

Let:


	\(N_g\) be the number of discreet intensity values in the image


	\(N_d\) be the number of discreet dependency sizes in the image


	\(N_z\) be the number of dependency zones in the image, which is equal to
\(\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\)


	\(\textbf{P}(i,j)\) be the dependence matrix


	\(p(i,j)\) be the normalized dependence matrix, defined as \(p(i,j) = \frac{\textbf{P}(i,j)}{N_z}\)





Note

Because incomplete zones are allowed, every voxel in the ROI has a dependency zone. Therefore, \(N_z = N_p\),
where \(N_p\) is the number of voxels in the image.
Due to the fact that \(Nz = N_p\), the Dependence Percentage and Gray Level Non-Uniformity Normalized (GLNN)
have been removed. The first because it would always compute to 1, the latter because it is mathematically equal to
first order - Uniformity (see getUniformityFeatureValue()). For
mathematical proofs, see here.



The following class specific settings are possible:


	distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.


	gldm_a [0]: float, \(\alpha\) cutoff value for dependence. A neighbouring voxel with gray level \(j\) is
considered dependent on center voxel with gray level \(i\) if \(|i-j|\le\alpha\)




References:


	Sun C, Wee WG. Neighboring Gray Level Dependence Matrix for Texture Classification. Comput Vision,
Graph Image Process. 1983;23:341-352





	
getSmallDependenceEmphasisFeatureValue()[source]

	1. Small Dependence Emphasis (SDE)


\[SDE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}\]

A measure of the distribution of small dependencies, with a greater value indicative
of smaller dependence and less homogeneous textures.






	
getLargeDependenceEmphasisFeatureValue()[source]

	2. Large Dependence Emphasis (LDE)


\[LDE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)j^2}}{N_z}\]

A measure of the distribution of large dependencies, with a greater value indicative
of larger dependence and more homogeneous textures.






	
getGrayLevelNonUniformityFeatureValue()[source]

	3. Gray Level Non-Uniformity (GLN)


\[GLN = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z}\]

Measures the similarity of gray-level intensity values in the image, where a lower GLN value
correlates with a greater similarity in intensity values.






	
getGrayLevelNonUniformityNormalizedFeatureValue()[source]

	DEPRECATED. Gray Level Non-Uniformity Normalized (GLNN)

\(GLNN = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{\sum^{N_g}_{i=1}
\sum^{N_d}_{j=1}{\textbf{P}(i,j)}^2}\)


Warning

This feature has been deprecated, as it is mathematically equal to First Order - Uniformity
getUniformityFeatureValue().
See here for the proof. Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for
this feature








	
getDependenceNonUniformityFeatureValue()[source]

	4. Dependence Non-Uniformity (DN)


\[DN = \frac{\sum^{N_d}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z}\]

Measures the similarity of dependence throughout the image, with a lower value indicating
more homogeneity among dependencies in the image.






	
getDependenceNonUniformityNormalizedFeatureValue()[source]

	5. Dependence Non-Uniformity Normalized (DNN)


\[DNN = \frac{\sum^{N_d}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}\]

Measures the similarity of dependence throughout the image, with a lower value indicating
more homogeneity among dependencies in the image. This is the normalized version of the DLN formula.






	
getGrayLevelVarianceFeatureValue()[source]

	6. Gray Level Variance (GLV)


\[GLV = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)(i - \mu)^2} \text{, where}
\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{ip(i,j)}\]

Measures the variance in grey level in the image.






	
getDependenceVarianceFeatureValue()[source]

	7. Dependence Variance (DV)


\[DV = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)(j - \mu)^2} \text{, where}
\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{jp(i,j)}\]

Measures the variance in dependence size in the image.






	
getDependenceEntropyFeatureValue()[source]

	8. Dependence Entropy (DE)


\[Dependence Entropy = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)\log_{2}(p(i,j)+\epsilon)}\]






	
getDependencePercentageFeatureValue()[source]

	DEPRECATED. Dependence Percentage


\[\textit{dependence percentage} = \frac{N_z}{N_p}\]


Warning

This feature has been deprecated, as it would always compute 1. See
here for more details. Enabling this feature will
result in the logging of a DeprecationWarning (does not interrupt extraction of other features), no value is
calculated for this features








	
getLowGrayLevelEmphasisFeatureValue()[source]

	9. Low Gray Level Emphasis (LGLE)


\[LGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}\]

Measures the distribution of low gray-level values, with a higher value indicating a greater
concentration of low gray-level values in the image.






	
getHighGrayLevelEmphasisFeatureValue()[source]

	10. High Gray Level Emphasis (HGLE)


\[HGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)i^2}}{N_z}\]

Measures the distribution of the higher gray-level values, with a higher value indicating
a greater concentration of high gray-level values in the image.






	
getSmallDependenceLowGrayLevelEmphasisFeatureValue()[source]

	11. Small Dependence Low Gray Level Emphasis (SDLGLE)


\[SDLGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2j^2}}}{N_z}\]

Measures the joint distribution of small dependence with lower gray-level values.






	
getSmallDependenceHighGrayLevelEmphasisFeatureValue()[source]

	12. Small Dependence High Gray Level Emphasis (SDHGLE)

Measures the joint distribution of small dependence with higher gray-level values.






	
getLargeDependenceLowGrayLevelEmphasisFeatureValue()[source]

	13. Large Dependence Low Gray Level Emphasis (LDLGLE)


\[LDLGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)j^2}{i^2}}}{N_z}\]

Measures the joint distribution of large dependence with lower gray-level values.






	
getLargeDependenceHighGrayLevelEmphasisFeatureValue()[source]

	14. Large Dependence High Gray Level Emphasis (LDHGLE)


\[LDHGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)i^2j^2}}{N_z}\]

Measures the joint distribution of large dependence with higher gray-level values.
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	Zwanenburg, A., Leger, S., Vallières, M., and Löck, S. (2016). Image biomarker
standardisation initiative - feature definitions. In eprint arXiv:1612.07003 [cs.CV]
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Excluded Radiomic Features

Some commonly know features are not supported (anymore) in PyRadiomics. These features are listed here, so as to provide
a complete overview, as well as argumentation for why these features are excluded from PyRadiomics


Excluded GLCM Features

For included features and class definition, see Gray Level Co-occurrence Matrix (GLCM) Features.


Sum Variance


\[\textit{sum variance} = \displaystyle\sum^{2N_g}_{k=2}{(k-SA)^2p_{x+y}(k)}\]

Sum Variance is a measure of heterogeneity that places higher weights on
neighboring intensity level pairs that deviate more from the mean.

This feature has been removed, as it is mathematically identical to Cluster Tendency (see
getClusterTendencyFeatureValue()).

The mathematical proof is as follows:


	As defined in GLCM,
\(p_{x+y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }i+j=k, k \in \{2, 3, \dots, 2N_g\}\)


	Starting with cluster tendency as defined in GLCM:





\[ \begin{align}\begin{aligned}\textit{cluster tendency} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
  {\big(i+j-\mu_x-\mu_y\big)^2p(i,j)}\\= \displaystyle\sum^{2N_g}_{k=2}{\Big[\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
  {\big(i+j-\mu_x-\mu_y\big)^2p(i,j)} \text{, where }i+j=k\Big]}\\= \displaystyle\sum^{2N_g}_{k=2}{\Big[\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
  {\big(k-(\mu_x+\mu_y)\big)^2p(i,j)} \text{, where }i+j=k \Big]}\end{aligned}\end{align} \]


Note

Because inside the sum \(\sum^{2N_g}_{k=2}\), \(k\) is a constant, and so are \(\mu_x\) and
\(\mu_y\), \(\big(k-(\mu_x+\mu_y)\big)^2\) is constant and can be taken outside the inner sum
\(\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}\).




\[= \displaystyle\sum^{2N_g}_{k=2}{\Big[\big(k-(\mu_x+\mu_y)\big)^2\displaystyle\sum^{N_g}_{i=1}
  \displaystyle\sum^{N_g}_{j=1}{p(i,j)} \text{, where }i+j=k \Big]}\]


	Using (1.) and (2.)





\[\textit{cluster tendency} = \displaystyle\sum^{2N_g}_{k=2}{\Big[\big(k-(\mu_x+\mu_y)\big)^2p_{x+y}(k)\Big]}\]


	As defined in GLCM, \(p_x(i) = \sum^{N_g}_{j=1}{P(i,j)}\) and \(\mu_x = \sum^{N_g}_{i=1}{p_x(i)i}\),
therefore \(\mu_x = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{P(i,j)i}\)


	Similarly as in (4.), \(\mu_y = \sum^{N_g}_{j=1}\sum^{N_g}_{i=1}{P(i,j)j}\)


	Using (4.) and (5.), \(\mu_x\) and \(\mu_y\) can then be combined as follows:





\[ \begin{align}\begin{aligned}\mu_x + \mu_y = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{P(i,j)i} +
\displaystyle\sum^{N_g}_{j=1}\displaystyle\sum^{N_g}_{i=1}{P(i,j)j}\\= \displaystyle\sum^{N_g}_{j=1}\displaystyle\sum^{N_g}_{i=1}{P(i,j)i + P(i, j)j}\\= \displaystyle\sum^{N_g}_{j=1}\displaystyle\sum^{N_g}_{i=1}{P(i,j)(i + j)}\\= \displaystyle\sum^{2N_g}_{k=2}{\Big[\displaystyle\sum^{N_g}_{j=1}
\displaystyle\sum^{N_g}_{i=1}{P(i,j)(i + j)} \text{, where } k = i + j\Big]}\\= \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)k} = \textit{sum average (SA)}\end{aligned}\end{align} \]


	Combining (3.) and (6.) yields the following formula:





\[\text{Cluster Tendency} =
\displaystyle\sum^{2N_g}_{k=2}{\Big[\big(k-SA\big)^2p_{x+y}(k)\Big]} =
\textit{ sum variance}\]

Q.E.D



Dissimilarity


\[\textit{dissimilarity} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)|i-j|}\]

Dissimilarity is a measure of local intensity variation defined as the mean absolute difference between the
neighbouring pairs. A larger value correlates with a greater disparity in intensity values
among neighboring voxels.

This feature has been removed, as it is mathematically identical to Difference Average (see
getDifferenceAverageFeatureValue()).

The mathematical proof is as follows:


	As defined in GLCM, \(p_{x-y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }|i-j|=k\)


	Starting with Dissimilarity as defined in GLCM:





\[ \begin{align}\begin{aligned}\textit{dissimilarity} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)|i-j|}\\= \displaystyle\sum^{N_g-1}_{k=0}{\Big[
\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)|i-j|} \text{, where }|i-j|=k\Big]}\\= \displaystyle\sum^{N_g-1}_{k=0}{\Big[
\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)k} \text{, where }|i-j|=k\Big]}\end{aligned}\end{align} \]


	Using (1.) and (2.)





\[\textit{dissimilarity} = \displaystyle\sum^{N_g-1}_{k=0}{p_{x-y}(k)k} = \textit{difference average}\]

Q.E.D.




Excluded GLDM Features

For included features and class definition, see Gray Level Dependence Matrix (GLDM) Features.


Dependence percentage


\[\textit{dependence percentage} = \frac{N_z}{N_p}\]

Dependence percentage is the ratio between voxels with a dependence zone and the total number of voxels in the image.
Because PyRadiomics allows for incomplete dependence zones, all voxels have a dependence zone and \(N_z = N_p\).
Therefore, this feature would always compute to 1.



Gray Level Non-Uniformity Normalized


\[\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}\]

Measures the similarity of gray-level intensity values in the image, where a lower GLNN value
correlates with a greater similarity in intensity values. This is the normalized version of the GLN formula.

This formula has been removed, because due to the definition of GLDM matrix (allowing incomplete zones), this feature is
equal to first order Uniformity (see getUniformityFeatureValue()).

The mathematical proof is as follows:


	Starting with Gray Level Non-Uniformity Normalized as defined in GLDM,





\[ \begin{align}\begin{aligned}\textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}\\= \displaystyle\sum^{N_g}_{i=1}{
    \frac{ \left( \sum^{N_d}_{j=1}{ \textbf{P}(i,j) } \right)^2 }{ N_z^2 }
}\\= \displaystyle\sum^{N_g}_{i=1}{ \left(
    \frac{ \sum^{N_d}_{j=1}{ \textbf{P}(i,j) } }{ N_z }
\right)^2}\\= \displaystyle\sum^{N_g}_{i=1}{ \left(
    \sum^{N_d}_{j=1}{ \frac{ \textbf{P}(i,j) } { N_z } }
\right)^2}\end{aligned}\end{align} \]


	As defined in GLDM, \(p(i,j) = \frac{\textbf{P}(i,j)}{N_z}\)


	Using (1.) and (2.)





\[\textit{GLNN} = \displaystyle\sum^{N_g}_{i=1}{ \left(
    \sum^{N_d}_{j=1}{ p(i,j) }
\right)^2}\]


	Because in the PyRadiomics definition incomplete dependence zones are allowed, every voxel in the ROI has a
dependence zone. Therefore, \(N_z = N_p\) and \(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\) equals the number of voxels
with gray level \(i\) and is equal to \(\textbf{P}(i)\), the first order histogram with \(N_g\) discreet
gray levels, as defined in first order.


	As defined in first order, \(p(i) = \frac{\textbf{P}(i)}{N_p}\)


	Using (2.), (4.) and (5.)





\[ \begin{align}\begin{aligned}\displaystyle\sum^{N_d}_{j=1}{\textbf{P}(i,j)} = \textbf{P}(i)\\\frac{\sum^{N_d}_{j=1}{\textbf{P}(i,j)}}{N_z} = \frac{\textbf{P}(i)}{N_p}\\\displaystyle\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{N_z}} = \frac{\textbf{P}(i)}{N_p}\\\displaystyle\sum^{N_d}_{j=1}{p(i,j)} = p(i)\end{aligned}\end{align} \]


	Combining (3.) and (6.) yields:





\[\textit{GLNN} = \displaystyle\sum^{N_g}_{i=1}{p(i)^2} = Uniformity\]

Q.E.D.
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Contributing to pyradiomics

There are many ways to contribute to pyradiomics, with varying levels of effort.  Do try to
look through the documentation first if something is unclear, and let us know how we can
do better.


	Ask a question on the pyradiomics email list [https://groups.google.com/forum/#!forum/pyradiomics]


	Submit a parameter file you used for your extraction


	Submit a feature request or bug, or add to the discussion on the pyradiomics issue tracker [https://github.com/Radiomics/pyradiomics/issues]


	Submit a Pull Request [https://github.com/Radiomics/pyradiomics/pulls] to improve pyradiomics or its documentation




We encourage a range of Pull Requests, from patches that include passing tests and
documentation, all the way down to half-baked ideas that launch discussions.


The PR Process, Circle CI, and Related Gotchas


How to submit a PR ?

If you are new to pyradiomics development and you don’t have push access to the pyradiomics
repository, here are the steps:


	Fork and clone [https://help.github.com/articles/fork-a-repo/] the repository.


	Create a branch.


	Push [https://help.github.com/articles/pushing-to-a-remote/] the branch to your GitHub fork.


	Create a Pull Request [https://github.com/Radiomics/pyradiomics/pulls].




This corresponds to the Fork & Pull Model mentioned in the GitHub flow [https://guides.github.com/introduction/flow/index.html]
guides.

If you have push access to pyradiomics repository, you could simply push your branch
into the main repository and create a Pull Request [https://github.com/Radiomics/pyradiomics/pulls]. This corresponds to the
Shared Repository Model and will facilitate other developers to checkout your
topic without having to configure a remote [https://help.github.com/articles/configuring-a-remote-for-a-fork/].
It will also simplify the workflow when you are co-developing a branch.

When submitting a PR, make sure to add a cc: @Radiomics/developers comment to notify pyradiomics
developers of your awesome contributions. Based on the
comments posted by the reviewers, you may have to revisit your patches.



How to integrate a PR ?

Getting your contributions integrated is relatively straightforward, here
is the checklist:


	Your changes include an update of the documentation if necessary


	Documentation on modules, classes and functions is contained in the respective docstrings


	More global documentation is contained in the docs folder.


	New modules need to be added to the auto-generated documentation. See
here [http://pyradiomics.readthedocs.io/en/latest/developers.html#documentation] for more
information on adding new modules to the documentation.






	Your changes are added in the changelog [https://github.com/Radiomics/pyradiomics/tree/master/CHANGES.rst] in the Next Release  section.


	All tests pass


	Consensus is reached. This usually means that at least one reviewer reviewed and approved your
changes or added a LGTM comment, which is an acronym for Looks Good to Me.




Next, there are two scenarios:


	You do NOT have push access: A pyradiomics core developer will integrate your PR.


	You have push access: Simply click on the “Merge pull request” button.




Then, click on the “Delete branch” button that appears afterward.



Automatic testing of pull requests

Every pull request is tested automatically using CircleCI, TravisCI and AppVeyor each time you push
a commit to it. The Github UI will restrict users from merging pull requests until
the builds have returned with a successful result indicating that all tests have
passed and there were no problems detected by the linter. These tests include the following


	flake8 to check adherence to the code style. See .flake8 and .editorconfig for styles,
exceptions to the PEP8 style, etc.


	If a feature class has a function _calculateCMatrix(), identifying it as a C enhanced class,
output from the C extension is compared to the output from full python calculation. A absolute
difference of 1e-3 is allowed to account for machine precision errors.


	All implemented features and feature classes have docstrings at the class level and feature
definition level.


	A baseline is available for all features extracted from the 5 included test cases and
calculated features match this baseline to within 3% (allowing for machine precision errors)







Submitting a parameter file

Different inputs into PyRadiomics require different settings. We encourage users to share their parameter file to help
others extract features using the best settings for their use case.


How to submit your parameter file?

Parameter files are stored in the repository under examples/exampleSettings. If you wish to submit your parameters
to the community, you can add your file here via a pull request (see above for details on making PRs).
To help you along, here is a small checklist:


	The filename should at least contain the modality (e.g. “MR”) for which it is intended, and optionally the body part
(e.g. “prostate”).


	Ensure the file has the correct extension (either “.yml” or “.yaml”)


	Using comments in the parameter file, briefly explain your use case.




After you’ve opened a PR to submit your parameter file, it will be checked for validity by the automatic testing. You
don’t have to specify your file anywhere, as parameter files are detected automatically in the exampleSettings
folder. If you want, you can also check your file manually using bin/testParams.py.
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Developers

This section contains information on how to add or customize the feature classes and filters available in PyRadiomics.
PyRadiomics enumerates the available feature classes and input image types at initialization of the toolbox. These are
available from the global radiomics namespace by use of the functions getFeatureClasses() and
getImageTypes(), respectively. Individual features in a feature class are enumerated at
initialization of the class. See also the contributing guidelines.


Signature of a feature class

Each feature class is defined in a separate module, the module name is used as the feature class name (e.g. if module
tex.py matches the feature class signature, it is available in the PyRadiomics toolbox as the ‘tex’ feature class). In
the module a class should be defined that fits the following signature:

[required imports]
from radiomics import base

class Radiomics[Name](base.RadiomicsFeaturesBase):
    """
    Feature class docstring
    """

    def __init__(self, inputImage, inputMask, **kwargs):
        super(Radiomics[Name], self).__init__(inputImage, inputMask, **kwargs)
        # Feature class specific init

    def get[Feature]FeatureValue(self):
        """
        Feature docstring
        """
        # value = feature calculation using member variables of RadiomicsFeatureBase and this class.
        return [value]






	At the top should be the import statements for packages required by the feature class. Unused import statements should
be removed (flake8 will fail if unused import statements are encountered, or import statements are not structured as
defined by appnexus).


	The class name should be ‘Radiomics’ followed by the name of the class (usually similar to the
module name. However, this name is not used elsewhere and may be named arbitrarily).


	The class should inherit (directly or indirectly) from base.RadiomicsFeaturesBase, which is an abstract class
defining the common interface for the feature classes


	Additional initialization steps should be called in the __init__ function. For default variables initialized, see
Feature Class Base.


	Documentation is required! Both at the class level (Feature class docstring) and at the level of the individual
features (Feature docstring).


	If the feature class uses C extensions for matrix calculation enhancement, which should be tested using
test_matrices, matrix calculation should be implemented as follows:


	The function calculating the matrix using the C extension should be defined in a function called _calculateMatrix.


	The functions to calculate the matrix accept no additional input arguments other than the self argument, and
return the fully processed matrix as a numpy array.


	The fully processed matrix should be assigned to a variable in the feature class named P_[Name], where
[Name] is identical to the feature class name (module name) (e.g. in feature class glcm, matrix is stored in
variable P_glcm






	A feature class specific logger is created by the base class, which will be a child logger (i.e. the ‘radiomics.tex’
logger in case of the feature class ‘tex’). It is exposed in the feature class as self.logger. Any log messages
generated by the feature class should make use of this logger to ensure that the hierarchy of classes is correctly
reflected in generated logs (i.e. self.logger.debug('message') to generate a debug log message).






Adding the baseline

During testing, calculated features are compared to a fixed baseline. If you implement a new class, it must be added to
the baseline, otherwise testing will fail. Fortunately, adding a new class to the baseline is fairly easy: just run the
add_baseline.py script located in the tests folder. In case you change a feature and need to rebuild the
baseline for that class, run the script with the class name as an argument (e.g. python add_baseline.py glcm).



Signature of individual features

Each individual feature is defined as a function in the feature class with the get[Name]FeatureValue(self)
signature, where [Name] is the feature name (unique on the feature class level). It accepts no input arguments, and
should return a scalar value. The self argument represents the instantiated feature class that defines the function,
and identifies the feature function as non-static.



Signature of an image type

All image types are defined in the imageoperations module, and identified by the
signature get[Name]Image(inputImage, inputMask, **kwargs). Here, [Name] represents the unique name for the image
type, which is also used to identify the image type during extraction. The input of a image type function is fixed and
consists of the inputImage and inputMask, SimpleITK Image objects of the original image and mask, respectively
and **kwargs, which are the customized settings that should be used for the extraction of features from the derived
image.

One or more derived images are returned using the ‘yield’ statement: yield derivedImage, imageTypeName, kwargs.
Here, derivedImage is one SimpleITK image object representing the filtered image, imageTypeName is a unique
string identifying features calculated using this filter in the output and kwargs are the customized settings for
the extraction (**kwargs passed as input, without the double asterisk). Multiple derived images can be
returned by multiple yield statements, or yield statements inside a loop. Please note that only one derived image should
be returned on each call to yield and that imageTypeName is a unique name for each returned derived image. Derived
images must have the same dimensions and occupy the same physical space to ensure compatibility with the mask.



Progress Reporting

When operating in full-python mode, the calculation of the texture matrices can take some time. Therefor PyRadiomics
provides the possibility to report the progress for calculation of GLCM and GLSZM.
This is only enabled in full-python mode when the verbosity (setVerbosity()) is set to INFO or
DEBUG. By default, none is provided and no progress of matrix calculation will be reported.

To enable progress reporting, the radiomics.progressReporter variable should be set to a class object (NOT an
instance), which fits the following signature:


	Accepts an iterable as the first positional argument and a keyword argument (‘desc’) specifying a label to display


	Can be used in a ‘with’ statement (i.e. exposes a __enter__ and __exit__ function)


	Is iterable (i.e. at least specifies an __iter__ function, which iterates over the iterable passed at
initialization)




It is also possible to create your own progress reporter. To achieve this, additionally specify a function __next__,
and have the __iter__ function return self. The __next__ function takes no arguments and returns a call to
the __next__ function of the iterable (i.e. return self.iterable.__next__()). Any prints/progress reporting
calls can then be inserted in this function prior to the return statement.

In radiomics\__init__.py a dummy progress reporter (_DummyProgressReporter) is defined, which is used when
calculating in full-python mode, but progress reporting is not enabled (verbosity > INFO) or the progressReporter
variable is not set.

To design a custom progress reporter, the following code can be adapted and used as progressReporter:

class MyProgressReporter(object):
    def __init__(self, iterable, desc=''):
        self.desc = desc  # A description is which describes the progress that is reported
        self.iterable = iterable  # Iterable is required

    # This function identifies the class as iterable and should return an object which exposes
    # the __next__ function that should be used to iterate over the object
    def __iter__(self):
        return self  # return self to 'intercept' the calls to __next__ to insert reporting code.

    def __next__(self):
        nextElement = self.iterable.__next__()
        # Insert custom progress reporting code here. This is called for every iteration in the loop
        # (once for each unique gray level in the ROI for GLCM and GLSZM)

        # By inserting after the call `self.iterable.__next__()` the function will exit before the
        # custom code is run when the stopIteration error is raised.
        return nextElement

    # This function is called when the 'with' statement is entered
    def __enter__(self):
        print (self.desc)  # Print out the description upon start of the loop
        return self  # The __enter__ function should return itself

    # This function is called when the 'with' statement is exited
    def __exit__(self, exc_type, exc_value, tb):
        pass  # If nothing needs to be closed or handled, so just specify 'pass'







Using feature classes directly


	This represents an example where feature classes are used directly, circumventing checks and preprocessing done by
the radiomics feature extractor class, and is not intended as standard use.


	(LINUX) To run from source code, add pyradiomics to the environment variable PYTHONPATH (Not necessary when
PyRadiomics is installed):


	setenv PYTHONPATH /path/to/pyradiomics/radiomics






	Start the python interactive session:


	python






	Import the necessary classes:

from radiomics import firstorder, glcm, imageoperations, shape, glrlm, glszm, getTestCase
import SimpleITK as sitk
import six
import sys, os







	Set up a data directory variable:

dataDir = '/path/to/pyradiomics/data'







	You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.


	Use SimpleITK to read a the brain image and mask:

imageName, maskName = getTestCase('brain1', dataDir)
image = sitk.ReadImage(imageName)
mask = sitk.ReadImage(maskName)







	Calculate the first order features:

firstOrderFeatures = firstorder.RadiomicsFirstOrder(image,mask)
firstOrderFeatures.enableAllFeatures()  # On the feature class level, all features are disabled by default.
firstOrderFeatures.calculateFeatures()
for (key,val) in six.iteritems(firstOrderFeatures.featureValues):
  print("\t%s: %s" % (key, val))







	See the Radiomic Features section for more features that you can calculate.






Addtional points for attention


Code style

To keep the PyRadiomics code consistent and as readable as possible, some style rules are enforced. These are part of
the continuous testing and implemented using flake8. See also the .flake8 configuration file in the root of the
repository. To aid in keeping a consistent code style, a .editorconfig file is provided in the root of the folder.

Module names should be lowercase, without underscores or spaces. Class names, function names and variables should be
declared using camelcase, with uppercase first letter for class names and lowercase first letter otherwise. Private
helper functions (which should not be included in the documentation) should be declared using a ‘_’ prefix. This is
consistent with the python style for marking them as ‘private’, and will automatically exclude them from the generated
documentation.



Documentation

The documentation of PyRadiomics is auto-generated from static files contained in the docs folder and the docstrings
of the Python code files. When a new feature class is added, this has to be added to the static file (features.rst)
describing the feature classes as well. If done so, sphinx will take care of the rest. A featureclass can be added as
follows:

<Class Name> Features
---------------------

.. automodule:: radiomics.<module name>
    :members:
    :undoc-members:
    :show-inheritance:
    :member-order: bysource





Documentation providing information of the feature class as a whole (e.g. how the feature matrix is calculated) should
be provided in the docstring of the class. Definition of individual features, including the mathematical formulas should
be provided in the docstrings of the feature functions. A docstring of the module is not required.

The presence of a docstring at the class level and at the level of each individual feature is required and checked
during testing. Missing docstrings will cause the test to fail.

If you make edits to the documentation, or if you want to test how documentation for the new classes you added is rendered, you can generate Sphinx documentation locally:



	pip install sphinx


	pip install sphinx_rtd_theme


	Run this command in the docs folder: make html


	HTML version of the Sphinx documentation root will be in _build/html/index.html









Testing

To ensure consistency in the extraction provided by PyRadiomics, continuous testing is used to test the PyRadiomics
source code after each commit. These tests are defined in the test folder and used to run tests for the following
environments:



	Python 2.7 64 bits (Windows, Linux and Mac)


	Python 3.4 64 bits (Windows and Linux)


	Python 3.5 64 bits (Windows and Linux)








Note

Python 3 testing for mac is currently disabled for Mac due to some issues with the SimpleITK package for python 3.



There are 3 testing scripts run for PyRadiomics. The first test is test_cmatrices, which asserts if the matrices
calculated by the C extensions match those calculated by Python. A threshold of 1e-3 is used to allow for machine
precision errors. The second test is test_docstrings, which asserts if there is missing documentation as described
above. The final and most important test is test_features, which compares the features calculated by PyRadiomics
against a known baseline using 5 test cases. These test cases and the baseline are stored in the data folder of the
repository. This ensures that changes to the code do not silently change the calculated values of the features.

To add a new feature class to the baseline, run the addClassToBaseline.py script, contained in the bin folder.
This script detects if there are feature classes in PyRadiomics, for which there is no baseline available. If any are
found, a new baseline if calculated for these classes in the full-python mode and added to the baseline files. These new
baseline files then needed to be included in the repository and committed.






          

      

      

    

  

  
    

    pyradiomics labs
    

    
 
  

    
      
          
            
  
pyradiomics labs

pyradiomics labs is a collection of exploratory/experimental features that are part of the repository, but are not part of the core functionality. We welcome user feedback about those features. Those scripts and features may change in the future.


pyradiomics-dcm


About

This is an experimental script to support the use of pyradiomics with DICOM data.

The script will accept as input a directory with a single DICOM image study for the input image,
and the file name pointing to a DICOM Segmentation Image (DICOM SEG) object.

The script will transparently convert the DICOM image into a representation suitable by pyradiomics
using either plastimatch or dcm2niix.



Why?


	medical image data usually comes in DICOM, and pyradiomics users often ask for help working with DICOM data


	there are public collections of data on TCIA where segmentations are stored as DICOM SEG


	the use of DICOM representation for radiomics features


	introduces standardized formalism for the attributes that should be stored to accompany the features


	allows to link results of calculations with the various ontologies describing the anatomy of the regions
analyzed, and the features itself (e.g., the SR document produced by the script will utilize IBSI nomenclature
to describe those features implemented in pyradiomics that have correspondence in IBSI)


	allows to reference (by unique identifiers) the DICOM image series and DICOM segmentation used for feature
calculation


	enables harmonized representation of data for images, segmentations and features (i.e., same data management
system can be used for all data types)


	does not prevent the use of the results in software tools that are not DICOM-aware - dcmqi can be used to
convert DICOM segmentations and DICOM SR with the measurements into non-DICOM representation (ITK-readable
image formats for segmentations, and JSON for measurements); a separate tool is available to generate
tab-delimited representation for DICOM attributes and measurements stored in those SRs:
https://github.com/QIICR/dcm2tables










Prerequisites


	plastimatch [http://plastimatch.org/plastimatch.html] or dcm2niix [https://github.com/rordenlab/dcm2niix] for
image volume reconstruction


	dcmqi 1 2 (build from fedb41 [https://github.com/QIICR/dcmqi/commit/3638930723bf1a239515409c1f9ec886a9fedb41]
or later) for reading DICOM SEG and converting to a representation suitable by pyradiomics, and for storing the
resulting features as a DICOM Structured Report, instantiating SR TID 1500


	prior to using this script, you might want to sort your DICOM data such that individual series
are stored in separate directories. You might find this tool useful for this purpose: https://github.com/pieper/dicomsort


	if you segmentations are not stored as DICOM SEG, you can use dcmqi for generating standard representation
of those segmentations: https://github.com/QIICR/dcmqi






Usage

Example usage from command line:

$ python pyradiomics-dcm.py -h
usage: pyradiomics-dcm.py --input-image <dir> --input-seg <name> --output-sr <name>

Warning: This is a "pyradiomics labs" script, which means it is an experimental feature in development!
The intent of this helper script is to enable pyradiomics feature extraction directly from/to DICOM data.
The segmentation defining the region of interest must be defined as a DICOM Segmentation image.
Support for DICOM Radiotherapy Structure Sets for defining region of interest may be added in the future.

optional arguments:
  -h, --help            show this help message and exit
  --input-image-dir Input DICOM image directory
                    Directory with the input DICOM series. It is expected
                    that a single series is corresponding to a single
                    scalar volume.
  --input-seg-file Input DICOM SEG file
                    Input segmentation defined as aDICOM Segmentation
                    object.
  --output-dir Directory to store the output file
                    Directory for saving the resulting DICOM file.
  --parameters pyradiomics extraction parameters
  --temp-dir Temporary directory
  --features-dict Dictionary mapping pyradiomics feature names to the IBSI defined features.
  --volume-reconstructor Choose the tool to be used for reconstructing image volume from the DICOM image series. Allowed options are plastimatch or dcm2niix (should be installed on the system). plastimatch will be used by default.







Sample invocation

$ python pyradiomics-dcm.py --input-image-dir CT --input-seg SEG/1.dcm \
   --output-dir OutputSR --temp-dir TempDir --parameters Pyradiomics_Params.yaml
dcmqi repository URL: https://github.com/QIICR/dcmqi.git revision: 3638930 tag: latest-4-g3638930
Row direction: 1 0 0
Col direction: 0 1 0
Z direction: 0 0 1
Total frames: 177
Total frames with unique IPP: 177
Total overlapping frames: 0
Origin: [-227.475, -194.775, -1223]
dcmqi repository URL: https://github.com/QIICR/dcmqi.git revision: 3638930 tag: latest-4-g3638930
Total measurement groups: 1
Adding to compositeContext: 1.dcm
Composite Context initialized
SR saved!

$ dsrdump OutputSR/1.2.276.0.7230010.3.1.4.0.60427.1539113881.935517.dcm
Enhanced SR Document

Patient             : interobs05 (#interobs05)
ENH: include pyradiomics identification and version
Study               : interobs05_20170910_CT
Series              : GTV segmentation - Reader AB - pyradiomics features (#1)
Manufacturer        : QIICR (https://github.com/QIICR/dcmqi.git, #0)
Completion Flag     : PARTIAL
Verification Flag   : UNVERIFIED
Content Date/Time   : 2018-10-09 15:38:01

<CONTAINER:(,,"Imaging Measurement Report")=SEPARATE>
  <has concept mod CODE:(,,"Language of Content Item and Descendants")=(eng,RFC5646,"English")>
  <has obs context CODE:(,,"Observer Type")=(121007,DCM,"Device")>
  <has obs context UIDREF:(,,"Device Observer UID")="1.3.6.1.4.1.43046.3.1.4.0.60427.1539113880.935515">
  <has obs context TEXT:(,,"Device Observer Name")="pyradiomics">
  <has obs context TEXT:(,,"Device Observer Model Name")="2.1.0.post10.dev0+g51bc87f">
  <has concept mod CODE:(,,"Procedure reported")=(P0-0099A,SRT,"Imaging procedure")>
  <contains CONTAINER:(,,"Image Library")=SEPARATE>
    <contains CONTAINER:(,,"Image Library Group")=SEPARATE>
      <has acq context CODE:(,,"Modality")=(CT,DCM,"Computed Tomography")>
      <has acq context DATE:(,,"Study Date")="20170910">
      <has acq context UIDREF:(,,"Frame of Reference UID")="1.3.6.1.4.1.40744.29.28518703451127075549995420991770873582">

...

  <contains CONTAINER:(,,"Imaging Measurements")=SEPARATE>
    <contains CONTAINER:(,,"Measurement Group")=SEPARATE>
      <has obs context TEXT:(,,"Tracking Identifier")="Gross Target Volume">
      <has obs context UIDREF:(,,"Tracking Unique Identifier")="1.3.6.1.4.1.43046.3.1.4.0.60427.1539113881.935516"
>
      <contains CODE:(,,"Finding")=(C112913,NCIt,"Gross Target Volume")>
      <contains IMAGE:(,,"Referenced Segment")=(SG image,,1)>
      <contains UIDREF:(,,"Source series for segmentation")="1.3.6.1.4.1.40744.29.18397950185694012790332812250603
612437">
      <has concept mod CODE:(,,"Finding Site")=(T-28000,SRT,"Lung")>
      <contains NUM:(,,"shape_MeshVolume")="7.255467E+04" (1,UCUM,"no units")>
      <contains NUM:(,,"Maximum 3D diameter")="7.491328E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_Maximum2DDiameterSlice")="6.767570E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"Elongation")="7.993260E-01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_MinorAxisLength")="4.699969E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"Flatness")="6.517569E-01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_Maximum2DDiameterColumn")="6.746851E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"Surface to volume ratio")="1.572168E-01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_Maximum2DDiameterRow")="6.072891E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_VoxelVolume")="7.285600E+04" (1,UCUM,"no units")>
      <contains NUM:(,,"Sphericity")="7.375024E-01" (1,UCUM,"no units")>
      <contains NUM:(,,"Surface area")="1.140681E+04" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_MajorAxisLength")="5.879915E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"shape_LeastAxisLength")="3.832275E+01" (1,UCUM,"no units")>
      <contains NUM:(,,"Small zone emphasis")="7.384502E-01" (1,UCUM,"no units")>
      <contains NUM:(,,"glszm_SmallAreaLowGrayLevelEmphasis")="3.381883E-03" (1,UCUM,"no units")>
      <contains NUM:(,,"Normalised grey level non-uniformity")="3.136554E-02" (1,UCUM,"no units")>
      <contains NUM:(,,"glszm_SmallAreaHighGrayLevelEmphasis")="5.478214E+02" (1,UCUM,"no units")>
      <contains NUM:(,,"Large zone emphasis")="3.873234E+03" (1,UCUM,"no units")>

...







Questions?

Please post your feedback and questions on the pyradiomics email list [https://groups.google.com/forum/#!forum/pyradiomics].



References


	1

	Herz C, Fillion-Robin J-C, Onken M, Riesmeier J, Lasso A, Pinter C, Fichtinger G, Pieper S, Clunie D, Kikinis R,
Fedorov A. dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using
DICOM. Cancer Research. 2017;77(21):e87–e90 http://cancerres.aacrjournals.org/content/77/21/e87



	2

	Fedorov A, Clunie D, Ulrich E, Bauer C, Wahle A, Brown B, Onken M, Riesmeier J, Pieper S, Kikinis R, Buatti J,
Beichel RR. (2016) DICOM for quantitative imaging biomarker development: a standards based approach to sharing
clinical data and structured PET/CT analysis results in head and neck cancer research.
PeerJ 4:e2057 https://doi.org/10.7717/peerj.2057










          

      

      

    

  

  
    

    Frequently Asked Questions
    

    
 
  

    
      
          
            
  
Frequently Asked Questions


Feature Extraction: Input, Customization and Reproducibility


Does PyRadiomics adhere to IBSI definitions of features?

For the most part, yes.

PyRadiomics development is also involved in the standardisation effort by the IBSI team.
Still, there are some differences between PyRadiomics and feature extraction as defined in the IBSI documents.
These arise in places where several equally valid alternatives exist. In some of these cases, PyRadiomics opted for the
one alternative, while the IBSI standard recommends another. For the sake of consistency in PyRadiomics development, we
have opted not to change the PyRadiomics implementation, but rather document the difference.

Most notably are the differences in gray value discretization (just for the fixed bin size type) and resampling. These
differences cannot be corrected by customization settings alone and require replacement by custom functions:


	Binning: When performing gray value discretization using a fixed bin width (AKA IBSI: FBS, Fixed Bins Size), and
with Resegmentation set (most notable Case A and C), IBSI computes the bin edges as equally spaced from the minimum of
the resegmentation range if absolute-resegmentation, and min(intensities) when sigma-resegmentation.

In PyRadiomics, gray value discretization using a fixed bin width always utilizes bin edges which are equally spaced
from 0 and where the lowest gray level is ensured to be discretized to the first bin. Regardless of any
resegmentation, etc.



	Resampling:


	Alignment of the grid: In IBSI, resampling grid is aligned by aligning the center of the image,
whereas in Pyradiomics, we align the corner of the origin voxel. This can result in slightly different interpolated
results, and even slightly different sizes of the resampled image and ROI, which in turn causes differences in
extracted feature values.


	Gray value rounding: In IBSI, they reason that if the original intensity values are from some lower precision
datatype, resampled values (which are floating point numbers, usually 64-bit) should be resampled to a similar
resolution. In the case of the IBSI phantoms, resampling to the nearest integer. PyRadiomics does not implement
this, as differences are likely to be small and therefore serve more to add complexity than increase the meaning
of the extracted values. Especially considering gray values are discretized anyway prior to calculation of most
(all except firstorder) features. If some kind of normalization is performed, then meaning of the gray values
changes as well. Differences arise here, because small rounding differences can cause a voxel to be assigned to a
different bin, which can be a marked change in feature value results, especially in small ROIs.


	Mask resampling: In IBSI, different interpolators can also be selected for resampling of the mask, with an
additional thresholding the retrieve the binary mask. This only works if the mask is limited to zero and non-zero
(i.e. 1) values. PyRadiomics also supports masks with different value labels, allowing extraction from different
ROIs in the same mask file by indicating different label values. To prevent any incorrect re-assignment,
PyRadiomics forces the mask resampling to be nearest neighbor.








Next, there are also some differences which can be solved by custom settings, in this case as only applies to
Configuration E, where both absolute AND sigma resegmentation are performed. In PyRadiomics, both types are implemented,
but only 1 can be selected at a time. To simulate applying both types, I calculated the absolute range after
resegmentation and used that as the absolute resegment range: [ -718, 400 ]

Finally, there is a difference between PyRadiomics and IBSI in the calculation of firstorder: Kurtosis. IBSI calculates
Excess Kurtosis, which is equal to Kurtosis - 3. PyRadiomics calculates Kurtosis, which is always +3 compared to IBSI.
The difference of 3 stems from the fact that a gaussian distribution has a kurtosis of 3.

So in summary, the cause of the difference between PyRadiomics results and IBSI benchmark, per case:

Configuration C: Due to differences in gray value discretization and resampling
Configuration D: Due to differences in resampling
Configuration E: Due to differences in resampling and resegmentation



What about gray value discretization? Fixed bin width? Fixed bin count?

Currently, although many studies favour a fixed bin count over a fixed bin width, there is no hard evidence favouring
either a fixed bin width or a fixed bin count in all cases.
Therefore PyRadiomics implements both the option for setting a fixed bin count (binCount) and a fixed bin width
(binWidth, default).

The reason the a fixed bin width has been chosen as the default parameter is based in part on studies in PET that show
a better reproducibility of features when implementing a fixed bin width 1.
Furthermore, our reasoning is best illustrated by the following example:
Given an input with 2 images with 2 ROIs, with the range of gray values in the first being {0-100} and in the second
{0-10}. If you use a fixed bin count, the “meaning” of 1 (discretized) gray value difference is different (in the first
it means 10 gray values different, in the second just 1). This means you are looking at texture based on very different
contrasts.

This example does assume that the original gray values mean the same thing in both images, and in case of images with
definite/absolute gray values (e.g. HU in CT, SUV in PET imaging), this holds true. However, in case of
arbitrary/relative gray values (e.g. signal intensity in MR), this is not necessarily the case.
In this latter case, we still recommend a fixed bin width, but with additional pre-processing (e.g. normalization) to
ensure better comparability of gray values. Use of a fixed bin count would be possible here, but then the calculated
features may still be very influenced by the range of gray values seen in the image, as well as noise caused by the fact
that the original gray values are less comparable. Moreover, regardless of type of gray value discretization, steps must
be taken to ensure good comparability, as the first order features largely use the original gray values
(without discretization).

Finally, there is the issue of what value to use for the width of the bin. Again, there are currently no specific
guidelines from literature as to what constitutes an optimal bin width. We try to choose a bin width in such a way, that
the resulting amount of bins is somewhere between 30 and 130 bins, which shows good reproducibility and performance in
literature for a fixed bin count 2. This allows for differing ranges of intensity in
ROIs, while still keeping the texture features informative (and comparable inter lesion!).



What modalities does PyRadiomics support? 2D? 3D? Color?

PyRadiomics is not developed for one specific modality. Multiple modalities can be processed by PyRadiomics, although
the optimal settings may differ between modalities. There are some constraints on the input however:


	Gray scale volume: PyRadiomics currently does not provide extraction from color images or images with complex values.
In those cases, each pixel/voxel has multiple values and PyRadiomics does not know how you’d want to combine those.
It is possible to select a color channel and use that as input:

import SimpleITK as sitk

from radiomics import featureextractor

# Instantiate extractor with parameter file
extractor = featureextractor.RadiomicsFeatureExtractor(r'path/to/params.yml')

# Set path to mask
ma_path = 'path/to/maskfile.nrrd'
label = 1  # Change this if the ROI in your mask is identified by a different value

# Load the image and extract a color channel
color_channel = 0
im = sitk.ReadImage(r'path/to/image.jpg')
selector = sitk.VectorIndexSelectionCastImageFilter()
selector.SetIndex(color_channel)
im = selector.Execute(im)

# Run the extractor
results = extractor.execute(im, ma_path, label=label)







	File format: Currently, PyRadiomics requires the image and mask input to be either a string pointing to a single file
containing the image/mask, or a SimpleITK.Image object (only possible in interactive mode). When e.g. using DICOMs,
the separate files need to be first combined into 1 volume prior to extracting features by either converting to e.g.
NRRD or NIFTII, or reading the DICOM in a python script and calling PyRadiomics from that script. See also
What file types are supported by PyRadiomics for input image and mask?.


	Dimensionality: PyRadiomics supports both 2D and 3D input images, but be aware that feature class shape only
extracts 3D shape descriptors and shape2D only 2D shape descriptors. If you have a 3D volume, but a single-slice
segmentation and want the results to include 2D shape descriptors, enable shape2D and set force2D=True. This
allows you to extract 2D shape features from a 3D volume with single-slice segmentation (but fails when segmentation
represents a volume segmentation spanning multiple slices).






What file types are supported by PyRadiomics for input image and mask?

PyRadiomics uses SimpleITK for image loading and handling. Therefore,
all image types supported by SimpleITK [https://simpleitk.readthedocs.io/en/master/Documentation/docs/source/IO.html]
can be used as input for PyRadiomics. Please note that only one file location can be provided for image/mask.

If your input images are DICOM, things become more complicated. If you want to process a single 2D image slice stored in
DICOM format, you can use it as any other format. However, if you are processing a volumetric dataset, you should first
confirm the DICOM files you have correspond to a single image series.
If you are not sure, you can sort the data such that you have a single directory per series using, for example,
dicomsort [https://github.com/pieper/dicomsort]. You can then convert the DICOM series into an ITK-readable
volumetric format using plastimatch convert [http://plastimatch.org/plastimatch.html#plastimatch-convert] or
dcm2niix [https://github.com/rordenlab/dcm2niix].

If your label is defined in DICOM format, this can mean different things. First, check what is the modality of the
dataset with the label. You can check that by using dcmdump [https://support.dcmtk.org/docs/dcmdump.html], and then
checking the line that says “Modality”. You can find the binary packages of this tool
here [https://github.com/QIICR/atom-dicom-dump#install-dcmtk-andor-gdcm] (you can also use
dicom-dump package [https://github.com/QIICR/atom-dicom-dump] if you want to look at DICOM files more conveniently
from the Atom editor [https://atom.io]).


	If the modality is an image (e.g., CT or MR), use plastimatch or dcm2niix to convert the image into a 3D volume.


	If the modality is RT, use plastimatch to convert contours of the structure sets into 3D volumes.


	If the modality is SEG, use dcmqi [https://github.com/QIICR/dcmqi] to convert voxel segmentations into 3D volumes.




We also provide a “labs” (experimental) script
pyradiomics-dcm [https://github.com/Radiomics/pyradiomics/tree/master/labs/pyradiomics-dcm] that can do those
conversions automatically and also saves the resulting features as DICOM SR.



I want to customize my extraction. How do I do that?

See also Customizing the Extraction. PyRadiomics can be customized in various ways, but it’s most easy to
do this by providing a parameter file. In this
yaml structured [http://yaml.org/] text file you can define your custom settings and which features and input image
types to enable.
We strongly recommend to use this method for customization, as it contains all the customization in 1 human-readable
file, which can be shared for other users and, more importantly, is checked for validity prior to the extraction.



Does PyRadiomics support voxel-wise feature extraction?

Yes, as of version 2.0, voxelwise calculation has been implemented. However, as this entails the calculations of
features for each voxel, performing a voxelwise extraction is much slower and as the output consists of a feature map
for each feature, output size is also much larger. See more on enabling a voxel-based extraction in the
usage section.



How should the input file for pyradiomics in batch-mode be structured?

Currently, the batch input file for pyradiomics is a csv file specifying the combinations of images and masks for
which to extract features. It must contain a header line, where at least header “Image” and “Mask” should be specified
(capital sensitive). These identify the columns that contain the file location of the image and the mask, respectively.
Each subsequent line represents one combination of an image and a mask. Additional columns are also allowed, these are
copied to the output in the same order as the input, with the additional columns of the calculated features appended
at the end. N.B. All header names should be unique and not match any of the produced header names by pyradiomics.




Common Errors


Error loading parameter file

When I try to load my own parameter file, I get error:”CoreError: Unable to load any data from source yaml file”

This error is thrown by PyKwalify when it is unable to read the parameter file. The most common cause is when the file
is indented using tabs, which throws a “token (‘t’) not recognized error”. Instead, ensure that all indentations are
made using 2 or 4 spaces.



Geometry mismatch between image and mask

My mask was generated using a another image than my input image, can I still extract features?

For various reasons, both image and mask must have the same geometry (i.e. same spacing, size, direction and origin)
when passed the feature classes. To this end PyRadiomics includes checks in the pipeline to ensure this is the case.
For more information on the mask checks, see checkMask(). If the geometry error is due to a
small difference in origin, spacing or direction, you can increase the tolerance by setting geometryTolerance.
If the error is large, or the dimensions do not match, you could also resample the mask to image reference space. An
example of this is provided in bin\resampleMask.py and can be enabled in PyRadiomics by setting correctMask to
True, which will only perform this correction in case of a geometery mismatch where the mask contains a valid ROI
(i.e. the mask contains the label value which does not include areas outside image physical bounds).



ValueError: (‘Label (…) not present in mask. Choose from […]’

This error indicates that the ROI identified by the value of label does not exist. I.e. there are no voxels in the
mask volume that have the value specified in label. To help you fix the error, this error also lists the possible
alternative label values that have been found. If no values are listed at the end of this error, it means that there
are no segmented voxels in your mask.


Note

It is possible that in the original mask there were voxels segmented, but were lost during resampling (when
upsampling). In that case, the ROI is too small for the requested resampledPixelSpacing and should be treated as
‘nothing is segmented’.





I’m unable to calculate texture matrices and getting a RunTimeError instead

This error means that something went wrong during the calculation of the matrices in the C extensions.
There are several potential causes for this error:


	“Error parsing array arguments.”




This error is thrown when either the Image or the Mask provided to the function could not be interpreted as a numpy array.


	“Expected image and mask to have equal number of dimensions.”




Thrown when the Image and Mask Provided did not have the same number of dimensions. N-Dimensional extraction is
supported, but the image and mask are still required to match in both the size and number of dimensions.


	“Dimensions of image and mask do not match.”




This means that the size of the mask array does not match the size of the image array. Because numpy arrays do not
contain information on the transformation to the physical world, input arrays of differing sizes cannot be matched.
You can solve this error by resampling the SimplITK-Image object of the Mask to the geometry of the Image before
converting them to their respective numpy arrays for feature calculation. See also Geometry mismatch between image and mask.


	“Error parsing distances array.”




This error is shown if the C extension was not able to interpret the distances argument that was provided. In the
settings, the distances parameter should be either a tuple or a list of values.


	“Expecting distances array to be 1-dimensional.”




Again an error in the provided distances. The list provided should be 1 dimensional (i.e. no nested lists).


	“Error calculating angles.”




This error means there was an issue in generating the angles based on the distances provided. Currently, this only
occurs when distances < 1 are provided.


	“Number of elements in <Matrix> would overflow index variable! (…)”




This error is shown when the size of the (flattened) output array would be larger than the maximum integer value
(~2 mln). This is generally caused by a too large number of bins after discretization, resulting in a too large range of
gray values in the discretized image used for texture calculation. We generally advise to chose a bin width so, that the
number of bins after discretization does not exceed 150-200. Running the code with DEBUG logging enabled shows the
number of bins that are generated and may help to give an indication as to how large your matrices are.


	“Failed to initialize output array for <Matrix>”




This means that the computer was unable to allocate memory for the output. This is most likely due to a too large output
size or too little free memory being available. Similar as above, run with DEBUG logging to see how many bins are
generated (giving an indication on how large the output matrices are).


	“Calculation of <Matrix> Failed.”




This error means there was a problem in the calculation of the matrix itself. It is generally thrown if the code tries
to set an element in the output array that is out-of-range. This can happen if there are voxels inside the ROI that
have gray values that are larger than the Ng parameter that is provided when calling the C function from Python.



I’m able to extract features, but many are NaN, 0 or 1. What happened?

It is possible that the segmentation was too small to extract a valid texture. Check the value of VoxelNum, which is
part of the additional information in the output. This is the number of voxels in the ROI after pre processing and
therefore the number of voxels that are used for feature calculation.

Another problem can be that you have to many or too few gray values after discretization. You can check this by
comparing the range of gray values in the ROI (a First Order feature) with the value for your binWidth parameter.
More bins capture smaller differences in gray values, but too many bins (compared to number of voxels) will yield low
probabilities in the texture matrices, resulting in non-informative features. There is no definitive answer for the
ideal number of discretized gray values, and this may differ between modalities.
One study 2 assessed the number of bins in PET and found that in the range of 16 - 128 bins, texture features did not
differ significantly.



I’m missing features from my output. How can I see what went wrong?

If calculation of features or application of filters fails, a warning is logged. If you want to know exactly what
happens inside the toolbox, PyRadiomics provides extensive debug logging. You can enable this to be printed to the
out, or stored in a separate log file. The output is regulated by radiomics.setVerbosity() and the PyRadiomics
logger can be accessed via radiomics.logger. See also here and the examples
included in the repository on how to set up logging.



Radiomics module not found in jupyter notebook

I installed PyRadiomics, but when I run the jupyter notebook, I get ImportError: No module named radiomics

This can have two possible causes:


	When installing PyRadiomics from the repository, your python path variable will be updated to enable python to find
the package. However, this value is only updated in commandline windows when they are restarted. If your jupyter
notebook was running during installation, you first need to restart it.


	Multiple versions of python can be installed on your machine simultaneously. Ensure PyRadiomics is installed on the
same version you are using in your Jupyter notebook.







Building PyRadiomics from source


During setup, python is unable to compile the C extensions.

This can occur when no compiler is available for python. If you’re installing on Windows, you can find free compilers
for python here [https://wiki.python.org/moin/WindowsCompilers].



Error loading C extensions.

When I try to run PyRadiomics, I get Error loading C extensions

When PyRadiomics is installed, the C extensions are compiled and copied to the installation folder, by default the
site-packages folder. However, when the notebook is run form the repository, it is possible that PyRadiomics uses
the source code directly (i.e. runs in development mode). You can check this by checking the radiomics.__path__
field, which will be something like ['radiomics'] when it is running in development mode and
['path/to/python/Lib/site-packages'] when running from the installed folder. If running in development mode, the C
extensions are not available by default. To make them available in development mode, run
python setup.py build_ext --inplace from the commandline, which is similar to the install command, but just
compiles the C extensions end copies them to the source folder (making them available when running from the source tree).




Miscellaneous


Which python versions is PyRadiomics compatible with?

PyRadiomics is compatible with python 3. Python 2 support was dropped in PyRadiomics version 3.0, though compatibility
code was retained. However, the automated testing only uses python versions 3.5, 3.6 and 3.7 (64 bits architecture).
Python < 2.6 is not supported. Other python versions may be compatible with PyRadiomics, but this is not actively tested
and therefore not guaranteed to work. Pre-built wheels are only available for the tested versions of python (3.5, 3.6
and 3.7)



A new version of PyRadiomics is available! Where can I find out what changed?

When a new version is released, a changelog is included in the
release statement [https://github.com/Radiomics/pyradiomics/releases]. Between releases, changes are not explicitly
documented, but all significant changes are implemented using pull requests. Check the
merged pull request [https://github.com/Radiomics/pyradiomics/pulls?utf8=%E2%9C%93&q=is%3Apr%20is%3Amerged] for the
latest changes.



I have some ideas for PyRadiomics. How can I contribute?

We welcome suggestions and contributions to PyRadiomics. Check our
guidelines [https://github.com/Radiomics/pyradiomics/blob/master/CONTRIBUTING.md] to see how you can contribute to
PyRadiomics. Signatures and code styles used in PyRadiomics are documented in the Developers section.



I found a bug! Where do I report it?

We strive to keep PyRadiomics as bug free as possible by thoroughly testing new additions before including them in the
stable version. However, nothing is perfect, and some bugs may therefore exist. Report yours by
opening an issue [https://github.com/Radiomics/pyradiomics/issues] on the GitHub. If you want to help in fixing it,
we’d welcome you to open up a pull request [https://github.com/Radiomics/pyradiomics/pulls] with your suggested fix.



My question is not listed here…

If you have a question that is not listed here, check the
pyradiomics forum on 3D Slicer discourse [https://discourse.slicer.org/c/community/radiomics/23] or the
issues on GitHub [https://github.com/Radiomics/pyradiomics/issues]. Feel free to post a new question or issue and
we’ll try to get back to you ASAP.
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Release Notes


Next Release



PyRadiomics 3.0.1


Bug Fixes


	Fix bug causing IndexError when no gray levels are ‘empty’.
(#592 [https://github.com/Radiomics/pyradiomics/pull/592])


	Fail initialization of feature extractor when the passed parameter file path
does not point to existing file. (#587 [https://github.com/Radiomics/pyradiomics/pull/587])


	Fix out-of-range check in GLSZM C calculation.
(#635 [https://github.com/Radiomics/pyradiomics/pull/635])


	Fix bug in Travis CI testing (MacOS platform).
(#643 [https://github.com/Radiomics/pyradiomics/pull/643],
#646 [https://github.com/Radiomics/pyradiomics/pull/646])


	Fix cmake URL and remove python2 support from DockerFiles.
(#645 [https://github.com/Radiomics/pyradiomics/pull/645])






Examples


	Add example settings for forced-2D extraction in MR.
(#613 [https://github.com/Radiomics/pyradiomics/pull/613],
#644 [https://github.com/Radiomics/pyradiomics/pull/644])






Documentation


	Fix typos in documentation.  (9d26a6b8 [https://github.com/Radiomics/pyradiomics/commit/9d26a6b8],
896682d7 [https://github.com/Radiomics/pyradiomics/commit/896682d7],
e100f1d0 [https://github.com/Radiomics/pyradiomics/commit/e100f1d0],
#639 [https://github.com/Radiomics/pyradiomics/pull/639])


	Further clarify resampling. (#599 [https://github.com/Radiomics/pyradiomics/pull/599])






Internal API


	Fail gracefully when grayvalues < 1 are encountered in the discretized image.
(#602 [https://github.com/Radiomics/pyradiomics/pull/602])


	Add optional progress reporting for voxel-based extraction.
(#636 [https://github.com/Radiomics/pyradiomics/pull/636])







PyRadiomics 3.0


Warning

As of this release, Python 2.7 testing is removed. Compatibility code such as it is will be left in place, but
future changes will not be checked for backwards compatibility. Moreover, no pre-built binaries for python 2.7
will be distributed on PyPi or Conda.
Finally, some deprecated code is removed (commandlinebatch.py and calculateFeatures()).




Bug Fixes


	Fix broken Conda deployment (51c5849 [https://github.com/Radiomics/pyradiomics/commit/51c5849])


	Fix error in IBSI mapping (labs/pyradiomics-dcm) (54d6689 [https://github.com/Radiomics/pyradiomics/commit/54d6689])


	Fix resampling error when spacing is correct, but sizes are different (ac7458e [https://github.com/Radiomics/pyradiomics/commit/ac7458e])


	Fix label channel selection (54a3782 [https://github.com/Radiomics/pyradiomics/commit/54a3782])


	Use local scope of settings, preventing race conditions in parallel extraction (43578f7 [https://github.com/Radiomics/pyradiomics/commit/43578f7])


	Fix resampling for 2D input (#545 [https://github.com/Radiomics/pyradiomics/pull/545])






Internal API


	Update C API to use large datatype for index pointers (#500 [https://github.com/Radiomics/pyradiomics/pull/500],
#501 [https://github.com/Radiomics/pyradiomics/pull/501])


	Update docker CLI to use python 3.6.9 and fix bugs to allow integration with pyradiomics-dcm lab (#527 [https://github.com/Radiomics/pyradiomics/pull/527])


	Add option to force path to UNIX style paths, even on windows (3c0708a [https://github.com/Radiomics/pyradiomics/commit/3c0708a])


	Removed deprecated code (fedaa5e [https://github.com/Radiomics/pyradiomics/commit/fedaa5e])






Testing


	Remove testing and deployment for python 2.7 (a5a7e61 [https://github.com/Radiomics/pyradiomics/commit/a5a7e61])






Documentation


	Refactor documentation (#536 [https://github.com/Radiomics/pyradiomics/pull/536])


	Fix various typos/wording


	Clarify use of force2D, and add example settings file (#558 [https://github.com/Radiomics/pyradiomics/pull/558])







PyRadiomics 2.2.0


Warning

In this release, the main interface class, RadiomicsFeaturesExtractor, was
renamed to RadiomicsFeatureExtractor
(no ‘s’ between ‘Feature’ and ‘Extractor’). This was done to avoid confusion between the module and class name.
(#481 [https://github.com/Radiomics/pyradiomics/pull/481])




New Features


	Add 2D shape features (#442 [https://github.com/Radiomics/pyradiomics/pull/442])


	Expose voxel-based feature extraction on the PyRadiomics command line interface.
(#457 [https://github.com/Radiomics/pyradiomics/pull/457])






Labs


	Add notebook investigating reproducibility between PyRadiomics and USF tool (ITK-based;
#458 [https://github.com/Radiomics/pyradiomics/pull/458])






Bug Fixes


	Flatten array when applying gray value discretization of the entire image (voxel-based, full kernel;
f87abcf [https://github.com/Radiomics/pyradiomics/commit/f87abcf])


	Fix incorrect removal of ‘empty gray levels’ in GLDM and GLRLM (voxel-based;
4b18ce2 [https://github.com/Radiomics/pyradiomics/commit/4b18ce2])


	Fix incorrect instantiation of firstorder voxel-based extraction.
(81e713a [https://github.com/Radiomics/pyradiomics/commit/81e713a])


	Force cast coefficients to float. Prevents overflow and type errors in feature calculation.
(e9d60c7 [https://github.com/Radiomics/pyradiomics/commit/e9d60c7])






Tests


	Removed support and continuous integration for Python 3.4 (not maintained since March 2019). Added support and CI for
Python 3.7. (#486 [https://github.com/Radiomics/pyradiomics/pull/486])






Internal API


	Update C-extensions:


	Rewrite C code to work with N-Dimensional input. (#463 [https://github.com/Radiomics/pyradiomics/pull/463])


	Add batch-calculation of kernels and vectorized feature calculation to improve voxel-based extraction duration.
(#466 [https://github.com/Radiomics/pyradiomics/pull/466])






	Add support for segmentation objects (multi-layer labelmaps;
#445 [https://github.com/Radiomics/pyradiomics/pull/445])


	Refactor the commandline interface (#481 [https://github.com/Radiomics/pyradiomics/pull/481])


	Extractor instantiated once (resulting in only 1 validation of the parameter file, outside of paralellization loop)


	Simplify construction of the python generator of the cases that are to be extracted


	Remove now unnecessary functions










Documentation


	Update documentation (#446 [https://github.com/Radiomics/pyradiomics/pull/446],
690891d [https://github.com/Radiomics/pyradiomics/commit/690891d])


	Fix some rendering errors (723d868 [https://github.com/Radiomics/pyradiomics/commit/723d868],
e3eb427 [https://github.com/Radiomics/pyradiomics/commit/e3eb427])







PyRadiomics 2.1.2


Labs


	Include algorithm details in dcm output. (f03145b [https://github.com/Radiomics/pyradiomics/commit/f03145b])







PyRadiomics 2.1.1


New Features


	Implement validation of commandline input. (#433 [https://github.com/Radiomics/pyradiomics/pull/433])


	Implement thread-safe logging for python >= 3.2 (#441 [https://github.com/Radiomics/pyradiomics/pull/441],
d8db675 [https://github.com/Radiomics/pyradiomics/commit/d8db675])






Labs


	Add script for using PyRadiomics with DICOM input and output.
(#437 [https://github.com/Radiomics/pyradiomics/pull/437])






Bug Fixes


	Fix memory error in calculation of GLCM-MCC. (167888b [https://github.com/Radiomics/pyradiomics/commit/167888b])


	Fix error in serialization for JSON output. (9d992fe [https://github.com/Radiomics/pyradiomics/commit/9d992fe])






Tests


	Expand testing to include more parts of PyRadiomics. (#410 [https://github.com/Radiomics/pyradiomics/pull/410])






Internal API


	Force cast the mask to an integer datatype on load. (#431 [https://github.com/Radiomics/pyradiomics/pull/431])






Dependencies


	Fix PyWavelets version to > 0.4.0, <= 1.0.0, due to compilation issue in SlicerRadiomics.
(c828b99 [https://github.com/Radiomics/pyradiomics/commit/c828b99],
SlicerRadiomics#50 [https://github.com/Radiomics/SlicerRadiomics/issues/50])







PyRadiomics 2.1.0


Feature Calculation Changes


	Switch Shape - Volume calculation to a mesh-based instead of a voxel-based one. This also affects all features derived
from Volume. Original Volume calculation is retained as VoxelVolume. Also switch calculation of maximum diameter
to mesh based. Only PCA-derived are not affected. (#427 [https://github.com/Radiomics/pyradiomics/pull/427])






New Features


	Add GLCM - Maximal Correlation Coefficient. (#411 [https://github.com/Radiomics/pyradiomics/pull/411])






New Parameters


	Update resegmentation function, add support for single (lower) threshold and new modes relative and sigma,
customizable in parameter resegmentMode. (#420 [https://github.com/Radiomics/pyradiomics/pull/420])


	Add resegmentShape. Default False, if set to True, the resegmented mask (intensity mask) will also be used
for shape calculation. Otherwise, the non-resegmented mask (morphological mask) is used for shape.
(#428 [https://github.com/Radiomics/pyradiomics/pull/428])






Bug fixes


	Fix bug in dimension checking in checkMask. (623b836 [https://github.com/Radiomics/pyradiomics/commit/623b836])


	Fix some errors in the testUtils and baseline generation script.
(c285c15 [https://github.com/Radiomics/pyradiomics/commit/c285c15])


	Prevent division by 0 in NGTDM - Coarseness. Return 0 instead.
(a59861e [https://github.com/Radiomics/pyradiomics/commit/a59861e])


	Remove duplicate key in settings file example. (828a7ac [https://github.com/Radiomics/pyradiomics/commit/828a7ac])


	Prevent duplicate log entries in parallel batch extraction.
(8cedd8f [https://github.com/Radiomics/pyradiomics/commit/8cedd8f])


	Build PyWavelets from source for AppVeyor (Windows) python 3.4 testing. Requires pre-installation of numpy and cython.
(6223d35 [https://github.com/Radiomics/pyradiomics/commit/6223d35])






Tests


	Integrate automatic distribution to conda upon release. (#422 [https://github.com/Radiomics/pyradiomics/pull/422])






Documentation


	Update README and Setup.py with additional classifiers, urls. Update section in README on Docker usage.
(0fe737e [https://github.com/Radiomics/pyradiomics/commit/0fe737e])






Internal API


	Use ValueError exceptions when feature extraction pipeline fails (exceptions of individual features)
(#420 [https://github.com/Radiomics/pyradiomics/pull/420])


	Update generation and names of general info features (provenance information)
(#420 [https://github.com/Radiomics/pyradiomics/pull/420],
#426 [https://github.com/Radiomics/pyradiomics/pull/426])


	Rewrite signatures of pre-processing functions to accept all customization arguments in 1 **kwargs dict.
Necessary parameters are obtained using kwargs.get inside the function. Full settings are passed to the function.
(#425 [https://github.com/Radiomics/pyradiomics/pull/425])







PyRadiomics 2.0.1


New Features


	Add Center of Mass to general info output. (#416 [https://github.com/Radiomics/pyradiomics/pull/416])






Bug fixes


	Fix invocation of numpy.histogram when using a fixed bin count.
(2a9fd79 [https://github.com/Radiomics/pyradiomics/commit/2a9fd79])


	Fix assignment of x and y pixelspacing in shape (no changes in results).
(#404 [https://github.com/Radiomics/pyradiomics/pull/404])


	Fix generation of approximation name (LLL or LL) in wavelet.
(#405 [https://github.com/Radiomics/pyradiomics/pull/405])


	Add missing requirements for new filters in Docker CLI file.
(#409 [https://github.com/Radiomics/pyradiomics/pull/409])


	Fix memory leak in C extensions. (#419 [https://github.com/Radiomics/pyradiomics/pull/419])


	Fix Label column parsing in batch processing. (217a840 [https://github.com/Radiomics/pyradiomics/commit/217a840])






Documentation


	Fix math rendering in GLCM. (c6a1f21 [https://github.com/Radiomics/pyradiomics/commit/c6a1f21])


	Add reference to GLDM feature class. (9f9361a [https://github.com/Radiomics/pyradiomics/commit/9f9361a])


	Correct typo in IMC1 and 2 formulas. (4ba909a [https://github.com/Radiomics/pyradiomics/commit/4ba909a])


	Update warning message in ROI check.  (1f16b9e [https://github.com/Radiomics/pyradiomics/commit/1f16b9e])


	Update usage section in documentation on command line usage.
(fe0e2c3 [https://github.com/Radiomics/pyradiomics/commit/fe0e2c3])






Internal API


	Simplify calculation of various GLCM features (no changes in results).
(#407 [https://github.com/Radiomics/pyradiomics/pull/407])







PyRadiomics 2.0.0


Feature Calculation Changes


	Change calculation of filter coefficients to reflect absolute maximum (take into account negative values).
(#319 [https://github.com/Radiomics/pyradiomics/pull/319])


	Mark duplicate features as ‘deprecated’ and document mathematical proof of the equality.
(#321 [https://github.com/Radiomics/pyradiomics/pull/321])


	Fix error in calculation of NGTDM’s Complexity and Contrast features
(#351 [https://github.com/Radiomics/pyradiomics/pull/351])






New Features


	Add preCrop, which crops the image onto the bounding box with an additional padding specified in padDistance.
This is similar to cropping as performed during resampling and serves to decrease memory consumption and computation
time. N.B. To ensure calculated values are not changed, a sufficient padding is required when using filters which
include values outside of ROI (e.g. Wavelet, LoG). (#317 [https://github.com/Radiomics/pyradiomics/pull/317])


	Add skip-nans as a commandline argument. If specified, features that compute NaN are removed from the output. In
batch mode, NaN is replaced by an empty string. (#318 [https://github.com/Radiomics/pyradiomics/pull/318])


	Add support to configure the feature extractor using a JSON structured string.
(#334 [https://github.com/Radiomics/pyradiomics/pull/334])


	Add Gradient Magnitude Filter. (#356 [https://github.com/Radiomics/pyradiomics/pull/356])


	Add Local Binary Pattern Filter (2D/3D). (#357 [https://github.com/Radiomics/pyradiomics/pull/357])


	Add support for Gray Value discretization using a fixed bin count.
(#386 [https://github.com/Radiomics/pyradiomics/pull/386])






Bug fixes


	Ensure PyKwalify has a log handler, which is needed when parameter file validation fails.
(#309 [https://github.com/Radiomics/pyradiomics/pull/309])


	Fix bug in error handling in checkMask() (compatibility issue between python 2 and 3).


	Fix bug in GLCM (incorrect use of self.maskArray) (#322 [https://github.com/Radiomics/pyradiomics/pull/322])


	Fix bug in error handling during geometry checks of image and mask.
(0257217 [https://github.com/Radiomics/pyradiomics/commit/0257217])


	Fix broken continuous testing integration due to unavailability of pip script.
(#333 [https://github.com/Radiomics/pyradiomics/pull/333])


	Fix incorrect path separator in example scripts. (c7c5d2e [https://github.com/Radiomics/pyradiomics/commit/c7c5d2e])


	Fix bug in the calculation of Wavelet. (#346 [https://github.com/Radiomics/pyradiomics/pull/346])


	Fix machine-precision errors in Eigenvalue calculation (Shape)
(#355 [https://github.com/Radiomics/pyradiomics/pull/355])


	Update validation rule for image filters (remove hardcoded filters by package-detected filters).
(#364 [https://github.com/Radiomics/pyradiomics/pull/364])


	Add missing requirements for LBP filters in the dockerfile.
(#389 [https://github.com/Radiomics/pyradiomics/pull/389])


	Fix deprecation error in feature extractor. (da1fc16 [https://github.com/Radiomics/pyradiomics/commit/da1fc16])


	Fix axis definition in wavelet. (4027a52 [https://github.com/Radiomics/pyradiomics/commit/4027a52])


	Fix erroneous double return of wavelet approximation.
(c8ceee2 [https://github.com/Radiomics/pyradiomics/commit/c8ceee2])






Tests


	Improve testing badge layout. (#312 [https://github.com/Radiomics/pyradiomics/pull/312])


	Remove unused testing configuration files. (#313 [https://github.com/Radiomics/pyradiomics/pull/313])


	Add testing for wavelet output. (#387 [https://github.com/Radiomics/pyradiomics/pull/387])


	Integrate publication to PyPi into the Continuous Integration, revise the CI workflow to test
python 2.7, 3.4, 3.5 and 3.6 for all 3 platforms (Windows, Mac and Linux).
N.B. This makes PyRadiomics installable via pip
(#394 [https://github.com/Radiomics/pyradiomics/pull/394])






Documentation


	Update documentation of base.py (#306 [https://github.com/Radiomics/pyradiomics/pull/306])


	Update notebooks to reflect most recent version of PyRadiomics.
(ac66e6c [https://github.com/Radiomics/pyradiomics/commit/ac66e6c])


	Add documentation detailing rationale of enforcing a fixed bin width.
(#320 [https://github.com/Radiomics/pyradiomics/pull/320])


	Update reference to official publication. (b395904 [https://github.com/Radiomics/pyradiomics/commit/b395904])


	Update installation instructions for docker. (#329 [https://github.com/Radiomics/pyradiomics/pull/329])


	Add version of NumPy, SimpleITK and PyWavelet to the additional information in the output.
(#342 [https://github.com/Radiomics/pyradiomics/pull/342])


	Add documentation for the calculation of Laplacian of Gaussian.
(#345 [https://github.com/Radiomics/pyradiomics/pull/345])


	Add refrences for the newly implemented filters
(4464d1c [https://github.com/Radiomics/pyradiomics/commit/4464d1c])


	Fix an error in the firstorder-Uniformity documentation.
(da7321d [https://github.com/Radiomics/pyradiomics/commit/da7321d])






Examples


	Add example for batchprocessing using a multithreaded approach.
(#305 [https://github.com/Radiomics/pyradiomics/pull/305])






Internal API


	Update batch script for the commandline interface. Ensures all required input is available and relative filepaths are
relative to the input file, not the current working directory.
(#307 [https://github.com/Radiomics/pyradiomics/pull/307])


	Remove support for 32-bits python, as memory errors can arise when extracting from many or large images in 32-bits
python. (#310 [https://github.com/Radiomics/pyradiomics/pull/310])


	Simplify Calculation of Wavelet Filter. Does not change output.
(#323 [https://github.com/Radiomics/pyradiomics/pull/323])


	Refactor commandline interface to work with only 1 entry point (pyradiomics). Also add parallel-processing option
for batch-processing (argument -j, which specifies number of CPU cores to use).
(#347 [https://github.com/Radiomics/pyradiomics/pull/347])


	Reconfigur testing to allow the removal of testcases from the repository itself (still available as binary data
attached to release 1.0.0) and store the baseline in a different format (allowing for easier change-tracking)
(#353 [https://github.com/Radiomics/pyradiomics/pull/353])


	Add a check for number of bins generated (preventing construction of too large matrices in C)
(#391 [https://github.com/Radiomics/pyradiomics/pull/391],
#393 [https://github.com/Radiomics/pyradiomics/pull/393])







PyRadiomics 1.3.0


Feature Calculation Changes


	Remove feature Sum Variance, as this is mathematically equal to Cluster Tendency.
(#300 [https://github.com/Radiomics/pyradiomics/pull/300])


	Fix feature formula error in NGTDM (incorrect use of square in Complexity and Contrast).
(#351 [https://github.com/Radiomics/pyradiomics/pull/351])






New Features


	Add a row by row customization of the extraction label in the batch processing command line script, as well as both
batchprocessing examples.
(#262 [https://github.com/Radiomics/pyradiomics/pull/262])


	Allow value 0 for a resampled pixel spacing (per dimension). Values of 0 are replaced by the spacing for that
dimension as it is in the original (non-resampled) mask. This allows resampling over a subset of dimension (e.g. only
in-plane resampling when out-of-plane spacing is set to 0).
(#299 [https://github.com/Radiomics/pyradiomics/pull/299])


	Add optional resegmentation of mask based on customizable threshold.
(#302 [https://github.com/Radiomics/pyradiomics/pull/302])


	Add Neighbouring Gray Tone Difference Matrix (NGTDM) (#296 [https://github.com/Radiomics/pyradiomics/pull/296])


	Add Add Gray Level Dependence Matrix (GLDM) (#295 [https://github.com/Radiomics/pyradiomics/pull/295])


	Add a docker file that exposes the PyRadiomics commandline tools.
(#297 [https://github.com/Radiomics/pyradiomics/pull/297],
#301 [https://github.com/Radiomics/pyradiomics/pull/301])


	Add voxel-based calculation, allowing for extraction of feature maps (values per voxel instead of per ROI).
(#337 [https://github.com/Radiomics/pyradiomics/pull/337])






Bug fixes


	In GLCM, the matrix is made symmetrical by adding the transposed matrix. However, numpy.transpose returns a view
and not a copy of the array, causing erroneous results when adding it to the original array. use
numpy.ndarray.copy to prevent this bug. N.B. This affects the feature values calculated by GLCM when symmetrical
matrix is enabled (as is the default setting).
(#261 [https://github.com/Radiomics/pyradiomics/pull/261])


	Use a python implementation to compute eigenvalues for shape.py instead of SimpleITK. The implementation in
SimpleITK assumes segmented voxels to be consecutive on the x-axis lines. Furthermore, it also assumes that all voxels
on a given line of x have the same values for y and z (which is not necessarily the case).
(#264 [https://github.com/Radiomics/pyradiomics/pull/264])


	Removal of outliers was not applied to returned object in normalizeImage.
(#277 [https://github.com/Radiomics/pyradiomics/pull/277])


	Fix python 3 incompatibility when using urllib
(#285 [https://github.com/Radiomics/pyradiomics/pull/285])


	Fix broken URL link in feature visualization notebooks.


	Update docker manually install python2 support (since recently not supported by default in
jupyter/datascience-notebook).
(#287 [https://github.com/Radiomics/pyradiomics/pull/287])


	For GLRLM and GLSZM, force2D keyword is passed manually, but was incorrectly named and therefore ignored. Fix name to
enable forced 2D extraction for GLRLM and GLSZM. (26b9ef3 [https://github.com/Radiomics/pyradiomics/commit/26b9ef3])


	Fix bug in the calculation of eigen values due to machine precision errors.
(#355 [https://github.com/Radiomics/pyradiomics/pull/355])






Tests


	Update the C Matrices test, so that the C and python calculated matrices will have the same dimensions when compared
(In the previous implementation, the _calculateCoefficients function was applied to the C calculated matrix, but
not in the python calculated matrix, for some texture matrices, this function can change the dimension of the matrix).
This update ensures that _calculateCoefficients is applied to neither matrix.
(#265 [https://github.com/Radiomics/pyradiomics/pull/265])


	Add a test to check validity of parameter files included in examples/exampleSettings.
(#294 [https://github.com/Radiomics/pyradiomics/pull/294])






Documentation

version 1.3.0 docs [http://pyradiomics.readthedocs.io/en/1.3.0]


	Update reference. (#271 [https://github.com/Radiomics/pyradiomics/pull/271])


	Move section “Customizing the Extraction” to the top level, to make it more visible.
(#271 [https://github.com/Radiomics/pyradiomics/pull/271])


	Change License to 3-clause BSD (#272 [https://github.com/Radiomics/pyradiomics/pull/272]


	Document the extend of compliance between PyRadiomics and the IBSI feature definitions
(#289 [https://github.com/Radiomics/pyradiomics/pull/289])


	Fix typos in documentation.


	Expand documentation on customizing the extraction
(#291 [https://github.com/Radiomics/pyradiomics/pull/291])


	Include contributing guidelines in sphinx-generated documentation and add a section on sharing parameter files.
(#294 [https://github.com/Radiomics/pyradiomics/pull/294])


	Insert missing line to enable all features in documentation on using the feature classes directly.
(5ce9f48 [https://github.com/Radiomics/pyradiomics/commit/5ce9f48])


	Fix typo in NGTDM documentation. (ea9a6ce [https://github.com/Radiomics/pyradiomics/commit/ea9a6ce])


	Fix some typos in documentation of firstorder - std and gldm - GLN
(#369 [https://github.com/Radiomics/pyradiomics/pull/369])


	Add additional comments to the code of the Wavelet filter (_swt3).
(#375 [https://github.com/Radiomics/pyradiomics/pull/375])


	Add references to the new filter functions. (4464d1c [https://github.com/Radiomics/pyradiomics/commit/4464d1c])






Examples


	Add example settings for CT, MR (3 scenarios).
(#273 [https://github.com/Radiomics/pyradiomics/pull/273])






Internal API


	Remove unnecessary rows and columns from texture matrices prior to feature calculation. This does not affect the value
of the calculated features, as the i and j vectors are updated accordingly, but it does reduce both computation time
and memory requirements. This is especially the case when calculating GLSZM on large segmentations, where there may be
many ‘empty’ zone sizes (i.e. no zones of that size are present in the ROI). This reduces the size of the matrix,
which therefore reduces the memory needed and the number of calculations performed in the vectorized operations.
(#265 [https://github.com/Radiomics/pyradiomics/pull/265])


	Remove circular import statement in __init__.py (circular with radiomics.base)
(#270 [https://github.com/Radiomics/pyradiomics/pull/270])


	Revise initialization of the feature class.
(#274 [https://github.com/Radiomics/pyradiomics/pull/274])


	Rename parts of the customization variables and functions to better reflect their definition
(#291 [https://github.com/Radiomics/pyradiomics/pull/291])


	Update C extensions: Make python wrapping more similar for different feature classes, simplify calculation of surface
area, remove deprecated Numpy C-API references and implement angle-generation in C.
(#360 [https://github.com/Radiomics/pyradiomics/pull/360])


	Remove Python equivalents of C extensions: Some, but not all C extensions had python equivalents, which calculated
equal values but, by using a python-only implementation, are much slower than the C extension. Only advantage is that
it would also work when compiling the code fails. Also update the tests to check consistency of the calculated
matrices against a baseline file (binary numpy array file) instead of python calculated matrices.
(#373 [https://github.com/Radiomics/pyradiomics/pull/373])






License


	Switch to 3-clause BSD license.
(#272 [https://github.com/Radiomics/pyradiomics/pull/272])







PyRadiomics 1.2.0


Feature Calculation Changes


	Remove feature SumVariance, rename SumVariance2  to SumVariance. SumVariance reflected the formula as is
defined in the paper by Haralick et al 1. However, the variance is calculated by subtracting the entropy as opposed to
subtracting the average, most likely due to a typo(‘f8’ instead of ‘f6’). SumVariance2 reflected the formula where
the average is subtracted and is retained as the only SumVariance.
(#233 [https://github.com/Radiomics/pyradiomics/pull/233])


	Redefine features Elongation and Flatness as the inverse of the original definition. This prevents a returned
value of NaN when the shape is completely flat. (#234 [https://github.com/Radiomics/pyradiomics/pull/234])


	In certain edge cases, the calculated maximum diameters may be too small when calculating using the python
implementation. This is corrected by the C extension and a warning is now logged when calculating these features in
python. N.B. As of this change, maximum diameter is not available for calculation in full-python mode
(#257 [https://github.com/Radiomics/pyradiomics/pull/257])


	For certain formulas, a NaN value is returned in some edge cases. Catch this and return a predefined value instead.
Document this behaviour in the docstrings of the features affected.
(#248 [https://github.com/Radiomics/pyradiomics/pull/248])






New Features


	Add Region of Interest checks. (#223 [https://github.com/Radiomics/pyradiomics/pull/223],
#227 [https://github.com/Radiomics/pyradiomics/pull/227])


	Add variable column support for batch input file (#228 [https://github.com/Radiomics/pyradiomics/pull/228])


	Add Docker support (#236 [https://github.com/Radiomics/pyradiomics/pull/236])






Bug fixes


	Instantiate output with input in commandlinebatch


	Correct Np when weighting is applied in GLRLM (#229 [https://github.com/Radiomics/pyradiomics/pull/229])


	Update CSV generators to reflect variable number of columns for input CSV in batch processing
(#246 [https://github.com/Radiomics/pyradiomics/pull/246])


	Return corrected mask when it had to be resampled due to geometry mismatch errors
(#260 [https://github.com/Radiomics/pyradiomics/pull/260])






Requirements


	Remove tqdm requirement (#232 [https://github.com/Radiomics/pyradiomics/pull/232])


	Reorganize requirements, with requirements only needed during development moved to requirements-dev.txt
(#231 [https://github.com/Radiomics/pyradiomics/pull/231])






Documentation

version 1.2.0 docs [http://pyradiomics.readthedocs.io/en/1.2.0]


	Update feature docstrings, making them more easily adaptable for article supplements
(#233 [https://github.com/Radiomics/pyradiomics/pull/233])


	Add FAQ concerning the cmatrices lib path (#233 [https://github.com/Radiomics/pyradiomics/pull/233])


	Add developer install step to documentation (#245 [https://github.com/Radiomics/pyradiomics/pull/245])


	Remove use of sudo (#233 [https://github.com/Radiomics/pyradiomics/pull/233])


	Fix subclass name in feature class signature (section “Developers”)


	Add subsection on customizing the extraction to the “Usage” section
(#252 [https://github.com/Radiomics/pyradiomics/pull/252])


	Remove SimpleITK installation workaround, this is no longer needed
(#249 [https://github.com/Radiomics/pyradiomics/pull/249])


	Add a changelog to keep track of changes and integrate this into the auto generated documentation
(#255 [https://github.com/Radiomics/pyradiomics/pull/255])






Examples


	Add pandas example, showing how to process PyRadiomics output/input using the pandas library
(#228 [https://github.com/Radiomics/pyradiomics/pull/228])






Internal API


	Add function to get or download test case (#235 [https://github.com/Radiomics/pyradiomics/pull/235])


	Rewrite C Extension algorithm for GSLZM. Instead of searching over the image for the next voxel when
growing a region, store all unprocessed voxels in a stack. This yields a significant increase in performance,
especially in large ROIs. Requires slightly more memory (1 array, type integer, size equal to number of voxels in
the ROI) (#257 [https://github.com/Radiomics/pyradiomics/pull/257])


	Implement C extension for calculation of maximum diameters.
(#257 [https://github.com/Radiomics/pyradiomics/pull/257])






Cleanups


	Restructure repository (#254 [https://github.com/Radiomics/pyradiomics/pull/254])


	Move jupyter notebooks to separate root folder (root/notebooks)


	Move example script to separate root folder (root/examples), with example settings in separate subfolder
(root/examples/exampleSettings)


	bin folder now only contains support scripts for the core code (i.e. generators for input files for batch
processing and scripts to generate new baselines or to resample a mask to the image geometry)











PyRadiomics 1.1.1


Feature Calculation Changes


	Correct error in formula for Compactness1. N.B. Baseline updated!
(#218 [https://github.com/Radiomics/pyradiomics/pull/218])


	Remove feature Roundness, as this feature is identical to feature Sphericity, but uses different implementation
for surface area calculation (all implemented in SimpleITK)
(#218 [https://github.com/Radiomics/pyradiomics/pull/218])


	Change handling of cases where max(X) mod binwidth = 0 during image discretization. These used to be assigned to
topmost bin, but this produces unexpected behaviour (i.e. in range 1, 2, 3, 4, 5 with binwidth 1, value 5 would be
discretized to 4 in stead of 5). Value now assigned is topmost bin + 1 (in concordance with default behavior of
numpy.digitize) (#219 [https://github.com/Radiomics/pyradiomics/pull/219])


	Change default value for voxelArrayShift (from 2000 to 0), this is to prevent unknowingly using a too large shift
when not necessary. Document effect of this parameter in the first order formulas affected.
(#219 [https://github.com/Radiomics/pyradiomics/pull/219])






New features


	Add forced 2D extraction (as alternative to resampling for handling anisotropy in voxels spacing)


	Enable specification of distances between neighbors for GLCM matrix calculation




(#215 [https://github.com/Radiomics/pyradiomics/pull/215])



New Parameters


	force2D, Boolean default False. Set to True to force a by slice texture calculation. Dimension that
identifies the ‘slice’ can be defined in force2Ddimension. If input ROI is already a 2D ROI, features are
automatically extracted in 2D.


	force2Ddimension, int, range 0-2, default 0. Specifies the ‘slice’ dimension for a by-slice feature extraction.
Value 0 identifies the ‘z’ dimension (axial plane feature extraction), and features will be extracted from the xy
plane. Similarly, 1 identifies the y dimension (coronal plane) and 2 the x dimension (saggital plane).


	distances, List of integers, default [1]. This specifies the distances between the center voxel and the
neighbor, for which angles should be generated.




(#215 [https://github.com/Radiomics/pyradiomics/pull/215])



Bug fixes


	Add some missing python 3 compatibility lines to the supporting script addClassToBaseline and command line script
pyradiomicsbatch (#210 [https://github.com/Radiomics/pyradiomics/pull/210],
#214 [https://github.com/Radiomics/pyradiomics/pull/214])


	Fix bug when loading image as file path and mask as SimpleITK object.
(#211 [https://github.com/Radiomics/pyradiomics/pull/211])


	Change location of parameter schema files. These files are otherwise not included in the wheel distribution.
(#221 [https://github.com/Radiomics/pyradiomics/pull/221])






Requirements


	Add sphinx_rtd_theme to requirements (needed to build documentation).
(#222 [https://github.com/Radiomics/pyradiomics/pull/222])






Documentation

version 1.1.1 docs [http://pyradiomics.readthedocs.io/en/1.1.1]


	Split package documentation into “Pipeline Modules” (all non-feature-class modules) and “Feature Definitions”
(feature class modules)


	Add developers section with documentation on how to implement new filters, feature and feature classes.


	Add FAQ section with some trouble shooting tips


	Rename some GLSZM features, this is to make them more consistent with GLRLM features, which are similar, but
calculated on a different matrix


	Add documentation for Elongation and Flatness


	Document mathematical correlation between various Shape features.




(#216 [https://github.com/Radiomics/pyradiomics/pull/216])



Internal API


	Update logging with more extensive debug logging and more informative info log messages.
(#220 [https://github.com/Radiomics/pyradiomics/pull/220])


	Replace parameter verbose with output printing implemented in logging. Control verbosity level to output (stderr) by
calling setVerbosity(), where level determines the verbosity level (as defined in python logging).
This prints out the requested levels of the log messaging, where process reports with parameter verbose are now
classified as INFO-level messages (i.e. specify INFO or DEBUG to enable these). N.B. parameter verbose is not longer
supported and will throw an error if passed in the parameter file
(#220 [https://github.com/Radiomics/pyradiomics/pull/220])


	Add feature class and input image type checks in featureextractor when changing these settings.
(#213 [https://github.com/Radiomics/pyradiomics/pull/213])


	Remove usage of eval (replaced by implementations of getattr), this is a more secure approach.
(#216 [https://github.com/Radiomics/pyradiomics/pull/216])


	Define default settings in featureextractor in a separate function. This is to ensure consistency in applied default
settings, as well as make them easily available outside of featureextractor
(#216 [https://github.com/Radiomics/pyradiomics/pull/216])


	Update reference for citing PyRadiomics (#224 [https://github.com/Radiomics/pyradiomics/pull/224])






Cleanups


	Remove unused variable (self.provenance_on in featureextractor, this value is now replaced by a customizable
setting)







PyRadiomics 1.1.0


New features


	Image normalization. This feature enables the normalization of image intensity values prior to feeding them to the
extraction pipeline (i.e. before any other preprocessing steps are performed). Normalization is based on the all gray
values contained within the image, not just those defined by the ROI in the mask.


	C Extensions for texture matrix and surface area calculation. These extensions enhance performance of texture matrix
calculation associated GLCM, GLRLM and GLSZM features and of surface area calculation. Below shows the decrease in
computation time for the 5 test cases included in PyRadiomics.
(#158 [https://github.com/Radiomics/pyradiomics/pull/158],
#200 [https://github.com/Radiomics/pyradiomics/pull/200],
#202 [https://github.com/Radiomics/pyradiomics/pull/202])


	GLCM 6913 ms -> 3 ms


	GLRLM 1850 ms -> 10 ms


	GLSZM 12064 ms -> 58 ms


	Surface Area 3241 ms -> 1 ms










New Parameters


	additionalInfo Boolean, default True. Enables additional information in the output if set to True.
(#190 [https://github.com/Radiomics/pyradiomics/pull/190])


	enableCExtensions Boolean, defailt True. Enables enhanced performance for texture matrix calculation using C
extensions if set to True. (#202 [https://github.com/Radiomics/pyradiomics/pull/202])


	normalize Boolean, default `` False``. If set to true, normalizes image before feeding it into the extraction
pipeline. (#209 [https://github.com/Radiomics/pyradiomics/pull/209])


	normalizeScale Float, > 0, default 1. Enables scaling of normalized intensities by specified value.
(#209 [https://github.com/Radiomics/pyradiomics/pull/209])


	removeOutliers Float, > 0, default None. If set, outliers (defined by the value specified) are removed by
setting them to the outlier value. Outlier value is defined on the non-scaled values.
(#209 [https://github.com/Radiomics/pyradiomics/pull/209])






Bug fixes


	Unlink venv only when needed in Circle CI testing (#199 [https://github.com/Radiomics/pyradiomics/pull/199])


	Fix datatype error when calling SimpleITK.ResampleImageFilter.SetSize() (only causes error in python 3,
#205 [https://github.com/Radiomics/pyradiomics/pull/205])






Requirements


	Add requirement for six>=1.10.0, needed to make PyRadiomics compatible with both python 2 and 3.






Documentation

version 1.1.0 docs [http://pyradiomics.readthedocs.io/en/1.1.0]


	Documentation on installation and usage is upgraded, with the addition of an embedded instruction video (in section
“Usage”, cued at the section on usage examples). (#187 [https://github.com/Radiomics/pyradiomics/pull/187])


	Updated contact information to point to the google groups.


	Updated the classifiers in the setup script to reflect the more advanced status of Pyradiomics.
(#193 [https://github.com/Radiomics/pyradiomics/pull/193])






Tests


	Add support for multiple python versions and platforms, now including python 2.7, 3.4, 3.5 (32/64bits) for Linux,
Windows and Mac. (#183 [https://github.com/Radiomics/pyradiomics/pull/183],
#191 [https://github.com/Radiomics/pyradiomics/pull/191],
#199 [https://github.com/Radiomics/pyradiomics/pull/199])


	Testing output is upgraded to ensure unique feature names (#195 [https://github.com/Radiomics/pyradiomics/pull/195],
#197 [https://github.com/Radiomics/pyradiomics/pull/197])


	Add test_cmatrices to assert conformity between output from Python and C based texture matrix calculation.






Internal API


	getFeatureClasses() and getInputImageTypes() are moved from
Feature Extractor <radiomics-featureextractor-label> to the global radiomics namespace. This enumerates the possible
feature classes and filters at initialization of the toolbox, and ensures feature classes are imported at
initialization. (#190 [https://github.com/Radiomics/pyradiomics/pull/190],
#198 [https://github.com/Radiomics/pyradiomics/pull/198])


	Python 3 Compatibility. Add support for compatibility with python 2.7 and python >= 3.4. This is achieved using
package six.


	Standardize function names for calculating matrices in python and with C extensions to _calculateMatrix and
_calculateCMatrix, respectively.


	Make C code consistent with C89 convention. All variables (pointers for python objects) are initialized at top of each
block.


	Optimize GLSZM calculation (C extension)


	Define temporary array for holding the calculated zones. During calculation, the matrix must be able to store all
possible zones, ranging from zone size 1 to total number of voxels (Ns), for each gray level (Ng). In this case, the
GLSZM would be initialized with size Ng * Ns, which is very memory intensive. Instead, use a temporary array of size
(Ns * 2) + 1, which stores all calculated zones in pairs of 2 elements: the first element holds the gray level, the
second the size of the calculated zone. The first element after the last zone is set to -1 to serve as a stop sign
for the second function, which translates the temporary array into the final GLSZM, which can be directly
initialized at optimum size.


	Use calloc and free for the temporary array holding the calculated zones.


	Use char datatype for mask. (signed char in GLSZM).


	Uses while loops. This allows to reduce the memory usage. Additionally, we observed that with recursive
functions it was ‘unexpectedly’ failing.


	Optimized search that finds a new index to process in the region growing.











PyRadiomics 1.0.1


New features


	Added 2 commandline scripts ( pyradiomics and pyradiomicsbatch), which enable feature extraction directly from the
commandline. For help on usage, run script with “-h” argument.
(#188 [https://github.com/Radiomics/pyradiomics/pull/188],
#194 [https://github.com/Radiomics/pyradiomics/pull/194],
#196 [https://github.com/Radiomics/pyradiomics/pull/196],
#205 [https://github.com/Radiomics/pyradiomics/pull/205])






Bug fixes


	Fix hardcoded label in shape (#175 [https://github.com/Radiomics/pyradiomics/pull/175])


	Fix incorrect axis when deleting empty angles in GLCM (#176 [https://github.com/Radiomics/pyradiomics/pull/176])


	Numpy slicing error in application of wavelet filters. This error caused the derived image to be erroneously rotated
and flipped, with misaligned mask as a result.(#182 [https://github.com/Radiomics/pyradiomics/pull/182])






Requirements


	Revert numpy minimum requirement to 1.9.2. All operations in PyRadiomics are supported by this version, and it is
the version used by Slicer. By reverting the minimum required version, installing PyRadiomics in the slicer extension
does not cause an update of the numpy package distributed by slicer.
(#180 [https://github.com/Radiomics/pyradiomics/pull/180])






Documentation

version 1.0.1 docs [http://pyradiomics.readthedocs.io/en/v1.0.1]


	Update on the documentation, reflecting recent changes in the code.


	Add developers and affiliations to ReadMe and documentation
(#177 [https://github.com/Radiomics/pyradiomics/pull/177])


	Added additional references and updated installation and usage section.






Internal API


	Different implementation of the various filters. No changes to calculation, but has a changed signature.

N.B. This results in inputImages to be differently defined (different capitalization, e.g. “orginal” should now be
“Original”). See documentation for definition of inputImages (featureextractor section).








PyRadiomics 1.0


New features


	Initial Release of PyRadiomics






Work in progress


	Full python calculation (C matrices branch not stable and reserved for later release)






Documentation


	Documentation published at readthedocs [http://pyradiomics.readthedocs.io/en/v1.0]





	1

	Haralick R, Shanmugan K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern
1973:610–621.










          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   b | 
   f | 
   g | 
   i | 
   n | 
   r | 
   s
   


   
     		 	

     		
       b	

     
       	
       	
       radiomics.base	
       

     		 	

     		
       f	

     
       	
       	
       radiomics.featureextractor	
       

     
       	
       	
       radiomics.firstorder	
       

     		 	

     		
       g	

     
       	
       	
       radiomics.generalinfo	
       

     
       	
       	
       radiomics.glcm	
       

     
       	
       	
       radiomics.gldm	
       

     
       	
       	
       radiomics.glrlm	
       

     
       	
       	
       radiomics.glszm	
       

     		 	

     		
       i	

     
       	
       	
       radiomics.imageoperations	
       

     		 	

     		
       n	

     
       	
       	
       radiomics.ngtdm	
       

     		 	

     		
       r	

     
       	
       	
       radiomics	
       

     		 	

     		
       s	

     
       	
       	
       radiomics.shape	
       

     
       	
       	
       radiomics.shape2D	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | G
 | L
 | N
 | R
 | S
 


A


  	
      	addEnabledImageTypes() (radiomics.generalinfo.GeneralInfo method)


      	addGeneralSettings() (radiomics.generalinfo.GeneralInfo method)


      	addImageElements() (radiomics.generalinfo.GeneralInfo method)


  

  	
      	addMaskElements() (radiomics.generalinfo.GeneralInfo method)


      	addProvenance() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	addStaticElements() (radiomics.generalinfo.GeneralInfo method)


  





B


  	
      	binImage() (in module radiomics.imageoperations)
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      	checkMask() (in module radiomics.imageoperations)


      	computeFeatures() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


  

  	
      	computeShape() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	cropToTumorMask() (in module radiomics.imageoperations)
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      	deprecated() (in module radiomics)


      	disableAllFeatures() (radiomics.base.RadiomicsFeaturesBase method)

      
        	(radiomics.featureextractor.RadiomicsFeatureExtractor method)


      


  

  	
      	disableAllImageTypes() (radiomics.featureextractor.RadiomicsFeatureExtractor method)
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      	enableAllFeatures() (radiomics.base.RadiomicsFeaturesBase method)

      
        	(radiomics.featureextractor.RadiomicsFeatureExtractor method)


      


      	enableAllImageTypes() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	enableFeatureByName() (radiomics.base.RadiomicsFeaturesBase method)


      	enableFeatureClassByName() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


  

  	
      	enableFeaturesByName() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	enableImageTypeByName() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	enableImageTypes() (radiomics.featureextractor.RadiomicsFeatureExtractor method)


      	execute() (radiomics.base.RadiomicsFeaturesBase method)

      
        	(radiomics.featureextractor.RadiomicsFeatureExtractor method)
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      	GeneralInfo (class in radiomics.generalinfo)


      	get10PercentileFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	get90PercentileFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getAutocorrelationFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getBinEdges() (in module radiomics.imageoperations)


      	getBusynessFeatureValue() (radiomics.ngtdm.RadiomicsNGTDM method)


      	getClusterProminenceFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getClusterShadeFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getClusterTendencyFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getCoarsenessFeatureValue() (radiomics.ngtdm.RadiomicsNGTDM method)


      	getCompactness1FeatureValue() (radiomics.shape.RadiomicsShape method)


      	getCompactness2FeatureValue() (radiomics.shape.RadiomicsShape method)


      	getComplexityFeatureValue() (radiomics.ngtdm.RadiomicsNGTDM method)


      	getContrastFeatureValue() (radiomics.glcm.RadiomicsGLCM method)

      
        	(radiomics.ngtdm.RadiomicsNGTDM method)


      


      	getCorrelationFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getDependenceEntropyFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getDependenceNonUniformityFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getDependenceNonUniformityNormalizedFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getDependencePercentageFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getDependenceVarianceFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getDifferenceAverageFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getDifferenceEntropyFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getDifferenceVarianceFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getDissimilarityFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getElongationFeatureValue() (radiomics.shape.RadiomicsShape method)

      
        	(radiomics.shape2D.RadiomicsShape2D method)


      


      	getEnergyFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getEntropyFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getExponentialImage() (in module radiomics.imageoperations)


      	getFeatureClasses() (in module radiomics)


      	getFeatureNames() (radiomics.base.RadiomicsFeaturesBase class method)


      	getFlatnessFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getGeneralInfo() (radiomics.generalinfo.GeneralInfo method)


      	getGradientImage() (in module radiomics.imageoperations)


      	getGrayLevelNonUniformityFeatureValue() (radiomics.gldm.RadiomicsGLDM method)

      
        	(radiomics.glrlm.RadiomicsGLRLM method)


        	(radiomics.glszm.RadiomicsGLSZM method)


      


      	getGrayLevelNonUniformityNormalizedFeatureValue() (radiomics.gldm.RadiomicsGLDM method)

      
        	(radiomics.glrlm.RadiomicsGLRLM method)


        	(radiomics.glszm.RadiomicsGLSZM method)


      


      	getGrayLevelVarianceFeatureValue() (radiomics.gldm.RadiomicsGLDM method)

      
        	(radiomics.glrlm.RadiomicsGLRLM method)


        	(radiomics.glszm.RadiomicsGLSZM method)


      


      	getHighGrayLevelEmphasisFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getHighGrayLevelRunEmphasisFeatureValue() (radiomics.glrlm.RadiomicsGLRLM method)


      	getHighGrayLevelZoneEmphasisFeatureValue() (radiomics.glszm.RadiomicsGLSZM method)


      	getHomogeneity1FeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getHomogeneity2FeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getIdFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getIdmFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getIdmnFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getIdnFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getImageTypes() (in module radiomics)


      	getImc1FeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getImc2FeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getInterquartileRangeFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getInverseVarianceFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getJointAverageFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getJointEnergyFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getJointEntropyFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getKurtosisFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getLargeAreaEmphasisFeatureValue() (radiomics.glszm.RadiomicsGLSZM method)


      	getLargeAreaHighGrayLevelEmphasisFeatureValue() (radiomics.glszm.RadiomicsGLSZM method)


      	getLargeAreaLowGrayLevelEmphasisFeatureValue() (radiomics.glszm.RadiomicsGLSZM method)


      	getLargeDependenceEmphasisFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getLargeDependenceHighGrayLevelEmphasisFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getLargeDependenceLowGrayLevelEmphasisFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getLBP2DImage() (in module radiomics.imageoperations)


      	getLBP3DImage() (in module radiomics.imageoperations)


      	getLeastAxisLengthFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getLogarithmImage() (in module radiomics.imageoperations)


      	getLoGImage() (in module radiomics.imageoperations)


  

  	
      	getLongRunEmphasisFeatureValue() (radiomics.glrlm.RadiomicsGLRLM method)


      	getLongRunHighGrayLevelEmphasisFeatureValue() (radiomics.glrlm.RadiomicsGLRLM method)


      	getLongRunLowGrayLevelEmphasisFeatureValue() (radiomics.glrlm.RadiomicsGLRLM method)


      	getLowGrayLevelEmphasisFeatureValue() (radiomics.gldm.RadiomicsGLDM method)


      	getLowGrayLevelRunEmphasisFeatureValue() (radiomics.glrlm.RadiomicsGLRLM method)


      	getLowGrayLevelZoneEmphasisFeatureValue() (radiomics.glszm.RadiomicsGLSZM method)


      	getMajorAxisLengthFeatureValue() (radiomics.shape.RadiomicsShape method)

      
        	(radiomics.shape2D.RadiomicsShape2D method)


      


      	getMask() (in module radiomics.imageoperations)


      	getMaximum2DDiameterColumnFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getMaximum2DDiameterRowFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getMaximum2DDiameterSliceFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getMaximum3DDiameterFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getMaximumDiameterFeatureValue() (radiomics.shape2D.RadiomicsShape2D method)


      	getMaximumFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getMaximumProbabilityFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getMCCFeatureValue() (radiomics.glcm.RadiomicsGLCM method)


      	getMeanAbsoluteDeviationFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getMeanFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getMedianFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getMeshSurfaceFeatureValue() (radiomics.shape2D.RadiomicsShape2D method)


      	getMeshVolumeFeatureValue() (radiomics.shape.RadiomicsShape method)


      	getMinimumFeatureValue() (radiomics.firstorder.RadiomicsFirstOrder method)


      	getMinorAxisLengthFeatureValue() (radiomics.shape.RadiomicsShape method)

      
        	(radiomics.shape2D.RadiomicsShape2D method)


      


      	getOriginalImage() (in module radiomics.imageoperations)


      	getParameterValidationFiles() (in module radiomics)


      	getPerimeterFeatureValue() (radiomics.shape2D.RadiomicsShape2D method)


      	getPerimeterSurfaceRatioFeatureValue() (radiomics.shape2D.RadiomicsShape2D method)


      	getPixelSurfaceFeatureValue() (radiomics.shape2D.RadiomicsShape2D method)
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  Source code for radiomics

# For convenience, import collection and numpy
# into the "pyradiomics" namespace

import collections  # noqa: F401
import inspect
import logging
import os
import pkgutil
import sys
import tempfile

import numpy  # noqa: F401
from six.moves import urllib

from . import imageoperations


[docs]def deprecated(func):
  """
  Decorator function to mark functions as deprecated. This is used to ensure deprecated feature functions are not
  added to the enabled features list when enabling 'all' features.
  """
  func._is_deprecated = True
  return func



[docs]def setVerbosity(level):
  """
  Change the amount of information PyRadiomics should print out during extraction. The lower the level, the more
  information is printed to the output (stderr).

  Using the ``level`` (Python defined logging levels) argument, the following levels are possible:

  - 60: Quiet mode, no messages are printed to the stderr
  - 50: Only log messages of level "CRITICAL" are printed
  - 40: Log messages of level "ERROR" and up are printed
  - 30: Log messages of level "WARNING" and up are printed
  - 20: Log messages of level "INFO" and up are printed
  - 10: Log messages of level "DEBUG" and up are printed (i.e. all log messages)

  By default, the radiomics logger is set to level "INFO" and the stderr handler to level "WARNING". Therefore a log
  storing the extraction log messages from level "INFO" and up can be easily set up by adding an appropriate handler to
  the radiomics logger, while the output to stderr will still only contain warnings and errors.

  .. note::

    This function assumes the handler added to the radiomics logger at initialization of the toolbox is not removed from
    the logger handlers and therefore remains the first handler.

  .. note::

    This does not affect the level of the logger itself (e.g. if verbosity level = 3, log messages with DEBUG level can
    still be stored in a log file if an appropriate handler is added to the logger and the logging level of the logger
    has been set to the correct level. *Exception: In case the verbosity is set to DEBUG, the level of the logger is
    also lowered to DEBUG. If the verbosity level is then raised again, the logger level will remain DEBUG.*
  """
  global logger, handler
  if level < 10:  # Lowest level: DEBUG
    level = 10
  if level > 60:  # Highest level = 50 (CRITICAL), level 60 results in a 'quiet' mode
    level = 60

  handler.setLevel(level)
  if handler.level < logger.level:  # reduce level of logger if necessary
    logger.setLevel(level)



[docs]def getFeatureClasses():
  """
  Iterates over all modules of the radiomics package using pkgutil and subsequently imports those modules.

  Return a dictionary of all modules containing featureClasses, with modulename as key, abstract
  class object of the featureClass as value. Assumes only one featureClass per module

  This is achieved by inspect.getmembers. Modules are added if it contains a member that is a class,
  with name starting with 'Radiomics' and is inherited from :py:class:`radiomics.base.RadiomicsFeaturesBase`.

  This iteration only runs once (at initialization of toolbox), subsequent calls return the dictionary created by the
  first call.
  """
  global _featureClasses
  if _featureClasses is None:  # On first call, enumerate possible feature classes and import PyRadiomics modules
    _featureClasses = {}
    for _, mod, _ in pkgutil.iter_modules([os.path.dirname(__file__)]):
      if str(mod).startswith('_'):  # Skip loading of 'private' classes, these don't contain feature classes
        continue
      __import__('radiomics.' + mod)
      module = sys.modules['radiomics.' + mod]
      attributes = inspect.getmembers(module, inspect.isclass)
      for a in attributes:
        if a[0].startswith('Radiomics'):
          for parentClass in inspect.getmro(a[1])[1:]:  # only include classes that inherit from RadiomicsFeaturesBase
            if parentClass.__name__ == 'RadiomicsFeaturesBase':
              _featureClasses[mod] = a[1]
              break

  return _featureClasses



[docs]def getImageTypes():
  """
  Returns a list of possible image types (i.e. the possible filters and the "Original", unfiltered image type). This
  function finds the image types dynamically by matching the signature ("get<imageType>Image") against functions defined
  in :ref:`imageoperations <radiomics-imageoperations-label>`. Returns a list containing available image type names
  (<imageType> part of the corresponding function name).

  This iteration only occurs once, at initialization of the toolbox. Found results are stored and returned on subsequent
  calls.
  """
  global _imageTypes
  if _imageTypes is None:  # On first cal, enumerate possible input image types (original and any filters)
    _imageTypes = [member[3:-5] for member in dir(imageoperations)
                   if member.startswith('get') and member.endswith("Image")]

  return _imageTypes



[docs]def getTestCase(testCase, dataDirectory=None):
  """
  This function provides an image and mask for testing PyRadiomics. One of seven test cases can be selected:

   - brain1
   - brain2
   - breast1
   - lung1
   - lung2
   - test_wavelet_64x64x64
   - test_wavelet_37x37x37

  Checks if the test case (consisting of an image and mask file with signature <testCase>_image.nrrd and
  <testCase>_label.nrrd, respectively) is available in the ``dataDirectory``. If not available, the testCase is
  downloaded from the GitHub repository and stored in the ``dataDirectory``. Also creates the ``dataDirectory`` if
  necessary.
  If no ``dataDirectory`` has been specified, PyRadiomics will use a temporary directory: <TEMPDIR>/pyradiomics/data.

  If the test case has been found or downloaded successfully, this function returns a tuple of two strings:
  ``(path/to/image.nrrd, path/to/mask.nrrd)``. In case of an error ``(None, None)`` is returned.

  .. note::
    To get the testcase with the corresponding single-slice label, append "_2D" to the testCase.

  """
  global logger, testCases
  label2D = False
  testCase = testCase.lower()
  if testCase.endswith('_2d'):
    label2D = True
    testCase = testCase[:-3]

  if testCase not in testCases:
    raise ValueError('Testcase "%s" not recognized!' % testCase)

  logger.debug('Getting test case %s', testCase)

  if dataDirectory is None:
    dataDirectory = os.path.join(tempfile.gettempdir(), 'pyradiomics', 'data')
    logger.debug('No data directory specified, using temporary directory "%s"', dataDirectory)

  im_name = '%s_image.nrrd' % testCase
  ma_name = '%s_label%s.nrrd' % (testCase, '_2D' if label2D else '')

  def get_or_download(fname):
    target = os.path.join(dataDirectory, fname)
    if os.path.exists(target):
      logger.debug('File %s already downloaded', fname)
      return target

    # Test case file not found, so try to download it
    logger.info("Test case file %s not available locally, downloading from github...", fname)

    # First check if the folder is available
    if not os.path.isdir(dataDirectory):
      logger.debug('Creating data directory: %s', dataDirectory)
      os.makedirs(dataDirectory)

    # Download the test case files (image and label)
    url = r'https://github.com/Radiomics/pyradiomics/releases/download/v1.0/%s' % fname

    logger.debug('Retrieving file at %s', url)
    _, headers = urllib.request.urlretrieve(url, target)

    if headers.get('status', '') == '404 Not Found':
      raise ValueError('Unable to download image file at %s!', url)

    logger.info('File %s downloaded', fname)
    return target

  logger.debug('Getting Image file')
  imageFile = get_or_download(im_name)

  logger.debug('Getting Mask file')
  maskFile = get_or_download(ma_name)

  return imageFile, maskFile



[docs]def getParameterValidationFiles():
  """
  Returns file locations for the parameter schema and custom validation functions, which are needed when validating
  a parameter file using ``PyKwalify.core``.
  This functions returns a tuple with the file location of the schema as first and python script with custom validation
  functions as second element.
  """
  dataDir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'schemas'))
  schemaFile = os.path.join(dataDir, 'paramSchema.yaml')
  schemaFuncs = os.path.join(dataDir, 'schemaFuncs.py')
  return schemaFile, schemaFuncs



class _DummyProgressReporter(object):
  """
  This class represents the dummy Progress reporter and is used for where progress reporting is implemented, but not
  enabled (when the progressReporter is not set or verbosity level > INFO).

  PyRadiomics expects that the _getProgressReporter function returns an object that takes an iterable and 'desc' keyword
  argument at initialization. Furthermore, it should be iterable, where it iterates over the iterable passed at
  initialization and it should be used in a 'with' statement.

  In this class, the __iter__ function redirects to the __iter__ function of the iterable passed at initialization.
  The __enter__ and __exit__ functions enable usage in a 'with' statement
  """
  def __init__(self, iterable=None, desc='', total=None):
    self.desc = desc  # A description is not required, but is provided by PyRadiomics
    self.iterable = iterable  # Iterable is required

  def __iter__(self):
    return self.iterable.__iter__()  # Just iterate over the iterable passed at initialization

  def __enter__(self):
    return self  # The __enter__ function should return itself

  def __exit__(self, exc_type, exc_value, tb):
    pass  # Nothing needs to be closed or handled, so just specify 'pass'

  def update(self, n=1):
    pass  # Nothing needs to be updated, so just specify 'pass'


[docs]def getProgressReporter(*args, **kwargs):
  """
  This function returns an instance of the progressReporter, if it is set and the logging level is defined at level INFO
  or DEBUG. In all other cases a dummy progress reporter is returned.

  To enable progress reporting, the progressReporter variable should be set to a class object (NOT an instance), which
  fits the following signature:

  1. Accepts an iterable as the first positional argument and a keyword argument ('desc') specifying a label to display
  2. Can be used in a 'with' statement (i.e. exposes a __enter__ and __exit__ function)
  3. Is iterable (i.e. at least specifies an __iter__ function, which iterates over the iterable passed at
     initialization).

  It is also possible to create your own progress reporter. To achieve this, additionally specify a function `__next__`,
  and have the `__iter__` function return `self`. The `__next__` function takes no arguments and returns a call to the
  `__next__` function of the iterable (i.e. `return self.iterable.__next__()`). Any prints/progress reporting calls can
  then be inserted in this function prior to the return statement.
  """
  global handler, progressReporter
  if progressReporter is not None and logging.NOTSET < handler.level <= logging.INFO:
    return progressReporter(*args, **kwargs)
  else:
    return _DummyProgressReporter(*args, **kwargs)


progressReporter = None

# 1. Set up logging
debugging = True
logger = logging.getLogger(__name__)  # 'radiomics'
logger.setLevel(logging.INFO)  # Set default level of logger to INFO to reflect most common setting for a log file

# Set up a handler to print out to stderr (controlled by setVerbosity())
handler = logging.StreamHandler()
# formatter = logging.Formatter("%(asctime)s %(levelname)s: %(message)s", "%Y-%m-%d %H:%M")  # Alternative format
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
# force level=WARNING for stderr handler, in case logging default is set differently (issue 102)
setVerbosity(logging.WARNING)

# 2. Define the available test cases
testCases = ('brain1', 'brain2', 'breast1', 'lung1', 'lung2', 'test_wavelet_64x64x64', 'test_wavelet_37x37x37')

# 3. Attempt to load and enable the C extensions.
cMatrices = None  # set cMatrices to None to prevent an import error in the feature classes.
cShape = None
try:
  from radiomics import _cmatrices as cMatrices  # noqa: F401
  from radiomics import _cshape as cShape  # noqa: F401
except ImportError as e:
  if os.path.isdir(os.path.join(os.path.dirname(__file__), '..', 'data')):
    # It looks like PyRadiomics is run from source (in which case "setup.py develop" must have been run)
    logger.critical('Apparently running from root, but unable to load C extensions... '
                    'Did you run "python setup.py build_ext --inplace"?')
    raise Exception('Apparently running from root, but unable to load C extensions... '
                    'Did you run "python setup.py build_ext --inplace"?')
  else:
    logger.critical('Error loading C extensions', exc_info=True)
    raise e

# 4. Enumerate implemented feature classes and input image types available in PyRadiomics
_featureClasses = None
_imageTypes = None
getFeatureClasses()
getImageTypes()

# 5. Set the version using the versioneer scripts
from ._version import get_versions  # noqa: I202

__version__ = get_versions()['version']
del get_versions
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  Source code for radiomics.base

import inspect
import logging
import traceback

import numpy
import SimpleITK as sitk
import six

from radiomics import getProgressReporter, imageoperations


[docs]class RadiomicsFeaturesBase(object):
  """
  This is the abstract class, which defines the common interface for the feature classes. All feature classes inherit
  (directly of indirectly) from this class.

  At initialization, image and labelmap are passed as SimpleITK image objects (``inputImage`` and ``inputMask``,
  respectively.) The motivation for using SimpleITK images as input is to keep the possibility of reusing the
  optimized feature calculators implemented in SimpleITK in the future. If either the image or the mask is None,
  initialization fails and a warning is logged (does not raise an error).

  Logging is set up using a child logger from the parent 'radiomics' logger. This retains the toolbox structure in
  the generated log. The child logger is named after the module containing the feature class (e.g. 'radiomics.glcm').

  Any pre calculations needed before the feature functions are called can be added by overriding the
  ``_initSegmentBasedCalculation`` function, which prepares the input for feature extraction. If image discretization is
  needed, this can be implemented by adding a call to ``_applyBinning`` to this initialization function, which also
  instantiates coefficients holding the maximum ('Ng') and unique ('GrayLevels') that can be found inside the ROI after
  binning. This function also instantiates the `matrix` variable, which holds the discretized image (the `imageArray`
  variable will hold only original gray levels).

  The following variables are instantiated at initialization:

  - kwargs: dictionary holding all customized settings passed to this feature class.
  - label: label value of Region of Interest (ROI) in labelmap. If key is not present, a default value of 1 is used.
  - featureNames: list containing the names of features defined in the feature class. See :py:func:`getFeatureNames`
  - inputImage: SimpleITK image object of the input image (dimensions x, y, z)

  The following variables are instantiated by the ``_initSegmentBasedCalculation`` function:

  - inputMask: SimpleITK image object of the input labelmap (dimensions x, y, z)
  - imageArray: numpy array of the gray values in the input image (dimensions z, y, x)
  - maskArray: numpy boolean array with elements set to ``True`` where labelmap = label, ``False`` otherwise,
    (dimensions z, y, x).
  - labelledVoxelCoordinates: tuple of 3 numpy arrays containing the z, x and y coordinates of the voxels included in
    the ROI, respectively. Length of each array is equal to total number of voxels inside ROI.
  - matrix: copy of the imageArray variable, with gray values inside ROI discretized using the specified binWidth.
    This variable is only instantiated if a call to ``_applyBinning`` is added to an override of
    ``_initSegmentBasedCalculation`` in the feature class.

  .. note::
    Although some variables listed here have similar names to customization settings, they do *not* represent all the
    possible settings on the feature class level. These variables are listed here to help developers develop new feature
    classes, which make use of these variables. For more information on customization, see
    :ref:`radiomics-customization-label`, which includes a comprehensive list of all possible settings, including
    default values and explanation of usage.
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    self.logger = logging.getLogger(self.__module__)
    self.logger.debug('Initializing feature class')

    if inputImage is None or inputMask is None:
      raise ValueError('Missing input image or mask')

    self.progressReporter = getProgressReporter

    self.settings = kwargs

    self.label = kwargs.get('label', 1)
    self.voxelBased = kwargs.get('voxelBased', False)

    self.coefficients = {}

    # all features are disabled by default
    self.enabledFeatures = {}
    self.featureValues = {}

    self.featureNames = self.getFeatureNames()

    self.inputImage = inputImage
    self.inputMask = inputMask

    self.imageArray = sitk.GetArrayFromImage(self.inputImage)

    if self.voxelBased:
      self._initVoxelBasedCalculation()
    else:
      self._initSegmentBasedCalculation()

  def _initSegmentBasedCalculation(self):
    self.maskArray = (sitk.GetArrayFromImage(self.inputMask) == self.label)  # boolean array

  def _initVoxelBasedCalculation(self):
    self.masked = self.settings.get('maskedKernel', True)

    maskArray = sitk.GetArrayFromImage(self.inputMask) == self.label  # boolean array
    self.labelledVoxelCoordinates = numpy.array(numpy.where(maskArray))

    # Set up the mask array for the gray value discretization
    if self.masked:
      self.maskArray = maskArray
    else:
      # This will cause the discretization to use the entire image
      self.maskArray = numpy.ones(self.imageArray.shape, dtype='bool')

  def _initCalculation(self, voxelCoordinates=None):
    """
    Last steps to prepare the class for extraction. This function calculates the texture matrices and coefficients in
    the respective feature classes
    """
    pass

  def _applyBinning(self, matrix):
    matrix, _ = imageoperations.binImage(matrix, self.maskArray, **self.settings)
    self.coefficients['grayLevels'] = numpy.unique(matrix[self.maskArray])
    self.coefficients['Ng'] = int(numpy.max(self.coefficients['grayLevels']))  # max gray level in the ROI
    return matrix

[docs]  def enableFeatureByName(self, featureName, enable=True):
    """
    Enables or disables feature specified by ``featureName``. If feature is not present in this class, a lookup error is
    raised. ``enable`` specifies whether to enable or disable the feature.
    """
    if featureName not in self.featureNames:
      raise LookupError('Feature not found: ' + featureName)
    if self.featureNames[featureName]:
      self.logger.warning('Feature %s is deprecated, use with caution!', featureName)
    self.enabledFeatures[featureName] = enable


[docs]  def enableAllFeatures(self):
    """
    Enables all features found in this class for calculation.

    .. note::
      Features that have been marked "deprecated" are not enabled by this function. They can still be enabled manually by
      a call to :py:func:`~radiomics.base.RadiomicsBase.enableFeatureByName()`,
      :py:func:`~radiomics.featureextractor.RadiomicsFeaturesExtractor.enableFeaturesByName()`
      or in the parameter file (by specifying the feature by name, not when enabling all features).
      However, in most cases this will still result only in a deprecation warning.
    """
    for featureName, is_deprecated in six.iteritems(self.featureNames):
      # only enable non-deprecated features here
      if not is_deprecated:
        self.enableFeatureByName(featureName, True)


[docs]  def disableAllFeatures(self):
    """
    Disables all features. Additionally resets any calculated features.
    """
    self.enabledFeatures = {}
    self.featureValues = {}


[docs]  @classmethod
  def getFeatureNames(cls):
    """
    Dynamically enumerates features defined in the feature class. Features are identified by the
    ``get<Feature>FeatureValue`` signature, where <Feature> is the name of the feature (unique on the class level).

    Found features are returned as a dictionary of the feature names, where the value ``True`` if the
    feature is deprecated, ``False`` otherwise (``{<Feature1>:<deprecated>, <Feature2>:<deprecated>, ...}``).

    This function is called at initialization, found features are stored in the ``featureNames`` variable.
    """
    attributes = inspect.getmembers(cls)
    features = {a[0][3:-12]: getattr(a[1], '_is_deprecated', False) for a in attributes
                if a[0].startswith('get') and a[0].endswith('FeatureValue')}
    return features


[docs]  def execute(self):
    """
    Calculates all features enabled in  ``enabledFeatures``. A feature is enabled if it's key is present in this
    dictionary and it's value is True.

    Calculated values are stored in the ``featureValues`` dictionary, with feature name as key and the calculated
    feature value as value. If an exception is thrown during calculation, the error is logged, and the value is set to
    NaN.
    """
    if len(self.enabledFeatures) == 0:
      self.enableAllFeatures()

    if self.voxelBased:
      self._calculateVoxels()
    else:
      self._calculateSegment()

    return self.featureValues


  def _calculateVoxels(self):
    initValue = self.settings.get('initValue', 0)
    voxelBatch = self.settings.get('voxelBatch', -1)

    # Initialize the output with empty numpy arrays
    for feature, enabled in six.iteritems(self.enabledFeatures):
      if enabled:
        self.featureValues[feature] = numpy.full(list(self.inputImage.GetSize())[::-1], initValue, dtype='float')

    # Calculate the feature values for all enabled features
    voxel_count = self.labelledVoxelCoordinates.shape[1]
    voxel_batch_idx = 0
    if voxelBatch < 0:
      voxelBatch = voxel_count
    n_batches = numpy.ceil(float(voxel_count) / voxelBatch)
    with self.progressReporter(total=n_batches, desc='batch') as pbar:
      while voxel_batch_idx < voxel_count:
        self.logger.debug('Calculating voxel batch no. %i/%i', int(voxel_batch_idx / voxelBatch) + 1, n_batches)
        voxelCoords = self.labelledVoxelCoordinates[:, voxel_batch_idx:voxel_batch_idx + voxelBatch]
        # Calculate the feature values for the current kernel
        for success, featureName, featureValue in self._calculateFeatures(voxelCoords):
          if success:
            self.featureValues[featureName][tuple(voxelCoords)] = featureValue

        voxel_batch_idx += voxelBatch
        pbar.update(1)  # Update progress bar

    # Convert the output to simple ITK image objects
    for feature, enabled in six.iteritems(self.enabledFeatures):
      if enabled:
        self.featureValues[feature] = sitk.GetImageFromArray(self.featureValues[feature])
        self.featureValues[feature].CopyInformation(self.inputImage)

  def _calculateSegment(self):
    # Get the feature values using the current segment.
    for success, featureName, featureValue in self._calculateFeatures():
      # Always store the result. In case of an error, featureValue will be NaN
      self.featureValues[featureName] = numpy.squeeze(featureValue)

  def _calculateFeatures(self, voxelCoordinates=None):
    # Initialize the calculation
    # This function serves to calculate the texture matrices where applicable
    self._initCalculation(voxelCoordinates)

    self.logger.debug('Calculating features')
    for feature, enabled in six.iteritems(self.enabledFeatures):
      if enabled:
        try:
          # Use getattr to get the feature calculation methods, then use '()' to evaluate those methods
          yield True, feature, getattr(self, 'get%sFeatureValue' % feature)()
        except DeprecationWarning as deprecatedFeature:
          # Add a debug log message, as a warning is usually shown and would entail a too verbose output
          self.logger.debug('Feature %s is deprecated: %s', feature, deprecatedFeature.args[0])
        except Exception:
          self.logger.error('FAILED: %s', traceback.format_exc())
          yield False, feature, numpy.nan
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  Source code for radiomics.featureextractor

# -*- coding: utf-8 -*-
from __future__ import print_function

import collections
from itertools import chain
import json
import logging
import os
import pathlib

import pykwalify.core
import SimpleITK as sitk
import six

from radiomics import generalinfo, getFeatureClasses, getImageTypes, getParameterValidationFiles, imageoperations


logger = logging.getLogger(__name__)
geometryTolerance = None


[docs]class RadiomicsFeatureExtractor:
  r"""
  Wrapper class for calculation of a radiomics signature.
  At and after initialisation various settings can be used to customize the resultant signature.
  This includes which classes and features to use, as well as what should be done in terms of preprocessing the image
  and what images (original and/or filtered) should be used as input.

  Then a call to :py:func:`execute` generates the radiomics
  signature specified by these settings for the passed image and labelmap combination. This function can be called
  repeatedly in a batch process to calculate the radiomics signature for all image and labelmap combinations.

  At initialization, a parameters file (string pointing to yaml or json structured file) or dictionary can be provided
  containing all necessary settings (top level containing keys "setting", "imageType" and/or "featureClass). This is
  done by passing it as the first positional argument. If no positional argument is supplied, or the argument is not
  either a dictionary or a string pointing to a valid file, defaults will be applied.
  Moreover, at initialisation, custom settings (*NOT enabled image types and/or feature classes*) can be provided
  as keyword arguments, with the setting name as key and its value as the argument value (e.g. ``binWidth=25``).
  Settings specified here will override those in the parameter file/dict/default settings.
  For more information on possible settings and customization, see
  :ref:`Customizing the Extraction <radiomics-customization-label>`.

  By default, all features in all feature classes are enabled.
  By default, only `Original` input image is enabled (No filter applied).
  """

  def __init__(self, *args, **kwargs):
    global logger

    self.settings = {}
    self.enabledImagetypes = {}
    self.enabledFeatures = {}

    self.featureClassNames = list(getFeatureClasses().keys())

    if len(args) == 1 and isinstance(args[0], dict):
      logger.info("Loading parameter dictionary")
      self._applyParams(paramsDict=args[0])
    elif len(args) == 1 and (isinstance(args[0], six.string_types) or isinstance(args[0], pathlib.PurePath)):
      if not os.path.isfile(args[0]):
        raise IOError("Parameter file %s does not exist." % args[0])
      logger.info("Loading parameter file %s", str(args[0]))
      self._applyParams(paramsFile=args[0])
    else:
      # Set default settings and update with and changed settings contained in kwargs
      self.settings = self._getDefaultSettings()
      logger.info('No valid config parameter, using defaults: %s', self.settings)

      self.enabledImagetypes = {'Original': {}}
      logger.info('Enabled image types: %s', self.enabledImagetypes)

      for featureClassName in self.featureClassNames:
        if featureClassName == 'shape2D':  # Do not enable shape2D by default
          continue
        self.enabledFeatures[featureClassName] = []
      logger.info('Enabled features: %s', self.enabledFeatures)

    if len(kwargs) > 0:
      logger.info('Applying custom setting overrides: %s', kwargs)
      self.settings.update(kwargs)
      logger.debug("Settings: %s", self.settings)

    if self.settings.get('binCount', None) is not None:
      logger.warning('Fixed bin Count enabled! However, we recommend using a fixed bin Width. See '
                     'http://pyradiomics.readthedocs.io/en/latest/faq.html#radiomics-fixed-bin-width for more '
                     'details')

    self._setTolerance()

  def _setTolerance(self):
    global geometryTolerance, logger
    geometryTolerance = self.settings.get('geometryTolerance')
    if geometryTolerance is not None:
      logger.debug('Setting SimpleITK tolerance to %s', geometryTolerance)
      sitk.ProcessObject.SetGlobalDefaultCoordinateTolerance(geometryTolerance)
      sitk.ProcessObject.SetGlobalDefaultDirectionTolerance(geometryTolerance)

[docs]  def addProvenance(self, provenance_on=True):
    """
    Enable or disable reporting of additional information on the extraction. This information includes toolbox version,
    enabled input images and applied settings. Furthermore, additional information on the image and region of interest
    (ROI) is also provided, including original image spacing, total number of voxels in the ROI and total number of
    fully connected volumes in the ROI.

    To disable this, call ``addProvenance(False)``.
    """
    self.settings['additionalInfo'] = provenance_on


  @staticmethod
  def _getDefaultSettings():
    """
    Returns a dictionary containg the default settings specified in this class. These settings cover global settings,
    such as ``additionalInfo``, as well as the image pre-processing settings (e.g. resampling). Feature class specific
    are defined in the respective feature classes and and not included here. Similarly, filter specific settings are
    defined in ``imageoperations.py`` and also not included here.
    """
    return {'minimumROIDimensions': 2,
            'minimumROISize': None,  # Skip testing the ROI size by default
            'normalize': False,
            'normalizeScale': 1,
            'removeOutliers': None,
            'resampledPixelSpacing': None,  # No resampling by default
            'interpolator': 'sitkBSpline',  # Alternative: sitk.sitkBSpline
            'preCrop': False,
            'padDistance': 5,
            'distances': [1],
            'force2D': False,
            'force2Ddimension': 0,
            'resegmentRange': None,  # No resegmentation by default
            'label': 1,
            'additionalInfo': True}

[docs]  def loadParams(self, paramsFile):
    """
    Parse specified parameters file and use it to update settings, enabled feature(Classes) and image types. For more
    information on the structure of the parameter file, see
    :ref:`Customizing the extraction <radiomics-customization-label>`.

    If supplied file does not match the requirements (i.e. unrecognized names or invalid values for a setting), a
    pykwalify error is raised.
    """
    self._applyParams(paramsFile=paramsFile)


[docs]  def loadJSONParams(self, JSON_configuration):
    """
    Pars JSON structured configuration string and use it to update settings, enabled feature(Classes) and image types.
    For more information on the structure of the parameter file, see
    :ref:`Customizing the extraction <radiomics-customization-label>`.

    If supplied string does not match the requirements (i.e. unrecognized names or invalid values for a setting), a
    pykwalify error is raised.
    """
    parameter_data = json.loads(JSON_configuration)
    self._applyParams(paramsDict=parameter_data)


  def _applyParams(self, paramsFile=None, paramsDict=None):
    """
    Validates and applies a parameter dictionary. See :py:func:`loadParams` and :py:func:`loadJSONParams` for more info.
    """
    global logger

    # Ensure pykwalify.core has a log handler (needed when parameter validation fails)
    if len(pykwalify.core.log.handlers) == 0 and len(logging.getLogger().handlers) == 0:
      # No handler available for either pykwalify or root logger, provide first radiomics handler (outputs to stderr)
      pykwalify.core.log.addHandler(logging.getLogger('radiomics').handlers[0])

    schemaFile, schemaFuncs = getParameterValidationFiles()
    c = pykwalify.core.Core(source_file=paramsFile, source_data=paramsDict,
                            schema_files=[schemaFile], extensions=[schemaFuncs])
    params = c.validate()
    logger.debug('Parameters parsed, input is valid.')

    enabledImageTypes = params.get('imageType', {})
    enabledFeatures = params.get('featureClass', {})
    settings = params.get('setting', {})
    voxelSettings = params.get('voxelSetting', {})

    logger.debug("Applying settings")

    if len(enabledImageTypes) == 0:
      self.enabledImagetypes = {'Original': {}}
    else:
      self.enabledImagetypes = enabledImageTypes

    logger.debug("Enabled image types: %s", self.enabledImagetypes)

    if len(enabledFeatures) == 0:
      self.enabledFeatures = {}
      for featureClassName in self.featureClassNames:
        self.enabledFeatures[featureClassName] = []
    else:
      self.enabledFeatures = enabledFeatures

    logger.debug("Enabled features: %s", self.enabledFeatures)

    # Set default settings and update with and changed settings contained in kwargs
    self.settings = self._getDefaultSettings()
    self.settings.update(settings)
    self.settings.update(voxelSettings)

    logger.debug("Settings: %s", settings)

[docs]  def execute(self, imageFilepath, maskFilepath, label=None, label_channel=None, voxelBased=False):
    """
    Compute radiomics signature for provide image and mask combination. It comprises of the following steps:

    1. Image and mask are loaded and normalized/resampled if necessary.
    2. Validity of ROI is checked using :py:func:`~imageoperations.checkMask`, which also computes and returns the
       bounding box.
    3. If enabled, provenance information is calculated and stored as part of the result. (Not available in voxel-based
       extraction)
    4. Shape features are calculated on a cropped (no padding) version of the original image. (Not available in
       voxel-based extraction)
    5. If enabled, resegment the mask based upon the range specified in ``resegmentRange`` (default None: resegmentation
       disabled).
    6. Other enabled feature classes are calculated using all specified image types in ``_enabledImageTypes``. Images
       are cropped to tumor mask (no padding) after application of any filter and before being passed to the feature
       class.
    7. The calculated features is returned as ``collections.OrderedDict``.

    :param imageFilepath: SimpleITK Image, or string pointing to image file location
    :param maskFilepath: SimpleITK Image, or string pointing to labelmap file location
    :param label: Integer, value of the label for which to extract features. If not specified, last specified label
        is used. Default label is 1.
    :param label_channel: Integer, index of the channel to use when maskFilepath yields a SimpleITK.Image with a vector
        pixel type. Default index is 0.
    :param voxelBased: Boolean, default False. If set to true, a voxel-based extraction is performed, segment-based
        otherwise.
    :returns: dictionary containing calculated signature ("<imageType>_<featureClass>_<featureName>":value).
        In case of segment-based extraction, value type for features is float, if voxel-based, type is SimpleITK.Image.
        Type of diagnostic features differs, but can always be represented as a string.
    """
    global geometryTolerance, logger
    _settings = self.settings.copy()

    tolerance = _settings.get('geometryTolerance')
    additionalInfo = _settings.get('additionalInfo', False)
    resegmentShape = _settings.get('resegmentShape', False)

    if label is not None:
      _settings['label'] = label
    else:
      label = _settings.get('label', 1)

    if label_channel is not None:
      _settings['label_channel'] = label_channel

    if geometryTolerance != tolerance:
      self._setTolerance()

    if additionalInfo:
      generalInfo = generalinfo.GeneralInfo()
      generalInfo.addGeneralSettings(_settings)
      generalInfo.addEnabledImageTypes(self.enabledImagetypes)
    else:
      generalInfo = None

    if voxelBased:
      _settings['voxelBased'] = True
      kernelRadius = _settings.get('kernelRadius', 1)
      logger.info('Starting voxel based extraction')
    else:
      kernelRadius = 0

    logger.info('Calculating features with label: %d', label)
    logger.debug('Enabled images types: %s', self.enabledImagetypes)
    logger.debug('Enabled features: %s', self.enabledFeatures)
    logger.debug('Current settings: %s', _settings)

    # 1. Load the image and mask
    featureVector = collections.OrderedDict()
    image, mask = self.loadImage(imageFilepath, maskFilepath, generalInfo, **_settings)

    # 2. Check whether loaded mask contains a valid ROI for feature extraction and get bounding box
    # Raises a ValueError if the ROI is invalid
    boundingBox, correctedMask = imageoperations.checkMask(image, mask, **_settings)

    # Update the mask if it had to be resampled
    if correctedMask is not None:
      if generalInfo is not None:
        generalInfo.addMaskElements(image, correctedMask, label, 'corrected')
      mask = correctedMask

    logger.debug('Image and Mask loaded and valid, starting extraction')

    # 5. Resegment the mask if enabled (parameter regsegmentMask is not None)
    resegmentedMask = None
    if _settings.get('resegmentRange', None) is not None:
      resegmentedMask = imageoperations.resegmentMask(image, mask, **_settings)

      # Recheck to see if the mask is still valid, raises a ValueError if not
      boundingBox, correctedMask = imageoperations.checkMask(image, resegmentedMask, **_settings)

      if generalInfo is not None:
        generalInfo.addMaskElements(image, resegmentedMask, label, 'resegmented')

    # 3. Add the additional information if enabled
    if generalInfo is not None:
      featureVector.update(generalInfo.getGeneralInfo())

    # if resegmentShape is True and resegmentation has been enabled, update the mask here to also use the
    # resegmented mask for shape calculation (e.g. PET resegmentation)
    if resegmentShape and resegmentedMask is not None:
      mask = resegmentedMask

    if not voxelBased:
      # 4. If shape descriptors should be calculated, handle it separately here
      featureVector.update(self.computeShape(image, mask, boundingBox, **_settings))

    # (Default) Only use resegemented mask for feature classes other than shape
    # can be overridden by specifying `resegmentShape` = True
    if not resegmentShape and resegmentedMask is not None:
      mask = resegmentedMask

    # 6. Calculate other enabled feature classes using enabled image types
    # Make generators for all enabled image types
    logger.debug('Creating image type iterator')
    imageGenerators = []
    for imageType, customKwargs in six.iteritems(self.enabledImagetypes):
      args = _settings.copy()
      args.update(customKwargs)
      logger.info('Adding image type "%s" with custom settings: %s' % (imageType, str(customKwargs)))
      imageGenerators = chain(imageGenerators, getattr(imageoperations, 'get%sImage' % imageType)(image, mask, **args))

    logger.debug('Extracting features')
    # Calculate features for all (filtered) images in the generator
    for inputImage, imageTypeName, inputKwargs in imageGenerators:
      logger.info('Calculating features for %s image', imageTypeName)
      inputImage, inputMask = imageoperations.cropToTumorMask(inputImage, mask, boundingBox, padDistance=kernelRadius)
      featureVector.update(self.computeFeatures(inputImage, inputMask, imageTypeName, **inputKwargs))

    logger.debug('Features extracted')

    return featureVector


[docs]  @staticmethod
  def loadImage(ImageFilePath, MaskFilePath, generalInfo=None, **kwargs):
    """
    Load and pre-process the image and labelmap.
    If ImageFilePath is a string, it is loaded as SimpleITK Image and assigned to ``image``,
    if it already is a SimpleITK Image, it is just assigned to ``image``.
    All other cases are ignored (nothing calculated).
    Equal approach is used for assignment of ``mask`` using MaskFilePath. If necessary, a segmentation object (i.e. mask
    volume with vector-image type) is then converted to a labelmap (=scalar image type). Data type is forced to UInt32.
    See also :py:func:`~imageoperations.getMask()`.

    If normalizing is enabled image is first normalized before any resampling is applied.

    If resampling is enabled, both image and mask are resampled and cropped to the tumor mask (with additional
    padding as specified in padDistance) after assignment of image and mask.

    :param ImageFilePath: SimpleITK.Image object or string pointing to SimpleITK readable file representing the image
                          to use.
    :param MaskFilePath: SimpleITK.Image object or string pointing to SimpleITK readable file representing the mask
                         to use.
    :param generalInfo: GeneralInfo Object. If provided, it is used to store diagnostic information of the
                        pre-processing.
    :param kwargs: Dictionary containing the settings to use for this particular image type.
    :return: 2 SimpleITK.Image objects representing the loaded image and mask, respectively.
    """
    global logger

    normalize = kwargs.get('normalize', False)
    interpolator = kwargs.get('interpolator')
    resampledPixelSpacing = kwargs.get('resampledPixelSpacing')
    preCrop = kwargs.get('preCrop', False)
    label = kwargs.get('label', 1)

    logger.info('Loading image and mask')
    if isinstance(ImageFilePath, six.string_types) and os.path.isfile(ImageFilePath):
      image = sitk.ReadImage(ImageFilePath)
    elif isinstance(ImageFilePath, sitk.SimpleITK.Image):
      image = ImageFilePath
    else:
      raise ValueError('Error reading image Filepath or SimpleITK object')

    if isinstance(MaskFilePath, six.string_types) and os.path.isfile(MaskFilePath):
      mask = sitk.ReadImage(MaskFilePath)
    elif isinstance(MaskFilePath, sitk.SimpleITK.Image):
      mask = MaskFilePath
    else:
      raise ValueError('Error reading mask Filepath or SimpleITK object')

    # process the mask
    mask = imageoperations.getMask(mask, **kwargs)

    if generalInfo is not None:
      generalInfo.addImageElements(image)
      # Do not include the image here, as the overlap between image and mask have not been checked
      # It is therefore possible that image and mask do not align, or even have different sizes.
      generalInfo.addMaskElements(None, mask, label)

    # This point is only reached if image and mask loaded correctly
    if normalize:
      image = imageoperations.normalizeImage(image, **kwargs)

    if interpolator is not None and resampledPixelSpacing is not None:
      image, mask = imageoperations.resampleImage(image, mask, **kwargs)
      if generalInfo is not None:
        generalInfo.addImageElements(image, 'interpolated')
        generalInfo.addMaskElements(image, mask, label, 'interpolated')

    elif preCrop:
      bb, correctedMask = imageoperations.checkMask(image, mask, **kwargs)
      if correctedMask is not None:
        # Update the mask if it had to be resampled
        mask = correctedMask
      if bb is None:
        # Mask checks failed
        raise ValueError('Mask checks failed during pre-crop')

      image, mask = imageoperations.cropToTumorMask(image, mask, bb, **kwargs)

    return image, mask


[docs]  def computeShape(self, image, mask, boundingBox, **kwargs):
    """
    Calculate the shape (2D and/or 3D) features for the passed image and mask.

    :param image: SimpleITK.Image object representing the image used
    :param mask: SimpleITK.Image object representing the mask used
    :param boundingBox: The boundingBox calculated by :py:func:`~imageoperations.checkMask()`, i.e. a tuple with lower
      (even indices) and upper (odd indices) bound of the bounding box for each dimension.
    :param kwargs: Dictionary containing the settings to use.
    :return: collections.OrderedDict containing the calculated shape features. If no features are calculated, an empty
      OrderedDict will be returned.
    """
    global logger
    featureVector = collections.OrderedDict()

    enabledFeatures = self.enabledFeatures

    croppedImage, croppedMask = imageoperations.cropToTumorMask(image, mask, boundingBox)

    # Define temporary function to compute shape features
    def compute(shape_type):
      logger.info('Computing %s', shape_type)
      featureNames = enabledFeatures[shape_type]
      shapeClass = getFeatureClasses()[shape_type](croppedImage, croppedMask, **kwargs)

      if featureNames is not None:
        for feature in featureNames:
          shapeClass.enableFeatureByName(feature)

      for (featureName, featureValue) in six.iteritems(shapeClass.execute()):
        newFeatureName = 'original_%s_%s' % (shape_type, featureName)
        featureVector[newFeatureName] = featureValue

    Nd = mask.GetDimension()
    if 'shape' in enabledFeatures.keys():
      if Nd == 3:
        compute('shape')
      else:
        logger.warning('Shape features are only available 3D input (for 2D input, use shape2D). Found %iD input',
                       Nd)

    if 'shape2D' in enabledFeatures.keys():
      if Nd == 3:
        force2D = kwargs.get('force2D', False)
        force2Ddimension = kwargs.get('force2Ddimension', 0)
        if not force2D:
          logger.warning('parameter force2D must be set to True to enable shape2D extraction')
        elif not (boundingBox[1::2] - boundingBox[0::2] + 1)[force2Ddimension] > 1:
          logger.warning('Size in specified 2D dimension (%i) is greater than 1, cannot calculate 2D shape',
                         force2Ddimension)
        else:
          compute('shape2D')
      elif Nd == 2:
        compute('shape2D')
      else:
        logger.warning('Shape2D features are only available for 2D and 3D (with force2D=True) input. '
                       'Found %iD input', Nd)

    return featureVector


[docs]  def computeFeatures(self, image, mask, imageTypeName, **kwargs):
    r"""
    Compute signature using image, mask and \*\*kwargs settings.

    This function computes the signature for just the passed image (original or derived), it does not pre-process or
    apply a filter to the passed image. Features / Classes to use for calculation of signature are defined in
    ``self.enabledFeatures``. See also :py:func:`enableFeaturesByName`.

    :param image: The cropped (and optionally filtered) SimpleITK.Image object representing the image used
    :param mask: The cropped SimpleITK.Image object representing the mask used
    :param imageTypeName: String specifying the filter applied to the image, or "original" if no filter was applied.
    :param kwargs: Dictionary containing the settings to use for this particular image type.
    :return: collections.OrderedDict containing the calculated features for all enabled classes.
      If no features are calculated, an empty OrderedDict will be returned.

    .. note::

      shape descriptors are independent of gray level and therefore calculated separately (handled in `execute`). In
      this function, no shape features are calculated.
    """
    global logger
    featureVector = collections.OrderedDict()
    featureClasses = getFeatureClasses()

    enabledFeatures = self.enabledFeatures

    # Calculate feature classes
    for featureClassName, featureNames in six.iteritems(enabledFeatures):
      # Handle calculation of shape features separately
      if featureClassName.startswith('shape'):
        continue

      if featureClassName in featureClasses:
        logger.info('Computing %s', featureClassName)

        featureClass = featureClasses[featureClassName](image, mask, **kwargs)

        if featureNames is not None:
          for feature in featureNames:
            featureClass.enableFeatureByName(feature)

        for (featureName, featureValue) in six.iteritems(featureClass.execute()):
          newFeatureName = '%s_%s_%s' % (imageTypeName, featureClassName, featureName)
          featureVector[newFeatureName] = featureValue

    return featureVector


[docs]  def enableAllImageTypes(self):
    """
    Enable all possible image types without any custom settings.
    """
    global logger

    logger.debug('Enabling all image types')
    for imageType in getImageTypes():
      self.enabledImagetypes[imageType] = {}
    logger.debug('Enabled images types: %s', self.enabledImagetypes)


[docs]  def disableAllImageTypes(self):
    """
    Disable all image types.
    """
    global logger

    logger.debug('Disabling all image types')
    self.enabledImagetypes = {}


[docs]  def enableImageTypeByName(self, imageType, enabled=True, customArgs=None):
    r"""
    Enable or disable specified image type. If enabling image type, optional custom settings can be specified in
    customArgs.

    Current possible image types are:

    - Original: No filter applied
    - Wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying either
      a High or a Low pass filter in each of the three dimensions.
      See also :py:func:`~radiomics.imageoperations.getWaveletImage`
    - LoG: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change, where sigma
      defines how coarse the emphasised texture should be. A low sigma emphasis on fine textures (change over a
      short distance), where a high sigma value emphasises coarse textures (gray level change over a large distance).
      See also :py:func:`~radiomics.imageoperations.getLoGImage`
    - Square: Takes the square of the image intensities and linearly scales them back to the original range.
      Negative values in the original image will be made negative again after application of filter.
    - SquareRoot: Takes the square root of the absolute image intensities and scales them back to original range.
      Negative values in the original image will be made negative again after application of filter.
    - Logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
      negative original values are made negative again after application of filter.
    - Exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
      scaled to original range and negative original values are made negative again after application of filter.
    - Gradient: Returns the gradient magnitude.
    - LBP2D: Calculates and returns a local binary pattern applied in 2D.
    - LBP3D: Calculates and returns local binary pattern maps applied in 3D using spherical harmonics. Last returned
      image is the corresponding kurtosis map.

    For the mathmetical formulas of square, squareroot, logarithm and exponential, see their respective functions in
    :ref:`imageoperations<radiomics-imageoperations-label>`
    (:py:func:`~radiomics.imageoperations.getSquareImage`,
    :py:func:`~radiomics.imageoperations.getSquareRootImage`,
    :py:func:`~radiomics.imageoperations.getLogarithmImage`,
    :py:func:`~radiomics.imageoperations.getExponentialImage`,
    :py:func:`~radiomics.imageoperations.getGradientImage`,
    :py:func:`~radiomics.imageoperations.getLBP2DImage` and
    :py:func:`~radiomics.imageoperations.getLBP3DImage`,
    respectively).
    """
    global logger

    if imageType not in getImageTypes():
      logger.warning('Image type %s is not recognized', imageType)
      return

    if enabled:
      if customArgs is None:
        customArgs = {}
        logger.debug('Enabling image type %s (no additional custom settings)', imageType)
      else:
        logger.debug('Enabling image type %s (additional custom settings: %s)', imageType, customArgs)
      self.enabledImagetypes[imageType] = customArgs
    elif imageType in self.enabledImagetypes:
      logger.debug('Disabling image type %s', imageType)
      del self.enabledImagetypes[imageType]
    logger.debug('Enabled images types: %s', self.enabledImagetypes)


[docs]  def enableImageTypes(self, **enabledImagetypes):
    """
    Enable input images, with optionally custom settings, which are applied to the respective input image.
    Settings specified here override those in kwargs.
    The following settings are not customizable:

    - interpolator
    - resampledPixelSpacing
    - padDistance

    Updates current settings: If necessary, enables input image. Always overrides custom settings specified
    for input images passed in inputImages.
    To disable input images, use :py:func:`enableInputImageByName` or :py:func:`disableAllInputImages`
    instead.

    :param enabledImagetypes: dictionary, key is imagetype (original, wavelet or log) and value is custom settings
      (dictionary)
    """
    global logger

    logger.debug('Updating enabled images types with %s', enabledImagetypes)
    self.enabledImagetypes.update(enabledImagetypes)
    logger.debug('Enabled images types: %s', self.enabledImagetypes)


[docs]  def enableAllFeatures(self):
    """
    Enable all classes and all features.

    .. note::
      Individual features that have been marked "deprecated" are not enabled by this function. They can still be enabled
      manually by a call to :py:func:`~radiomics.base.RadiomicsBase.enableFeatureByName()`,
      :py:func:`~radiomics.featureextractor.RadiomicsFeaturesExtractor.enableFeaturesByName()`
      or in the parameter file (by specifying the feature by name, not when enabling all features).
      However, in most cases this will still result only in a deprecation warning.
    """
    global logger

    logger.debug('Enabling all features in all feature classes')
    for featureClassName in self.featureClassNames:
      self.enabledFeatures[featureClassName] = []
    logger.debug('Enabled features: %s', self.enabledFeatures)


[docs]  def disableAllFeatures(self):
    """
    Disable all classes.
    """
    global logger

    logger.debug('Disabling all feature classes')
    self.enabledFeatures = {}


[docs]  def enableFeatureClassByName(self, featureClass, enabled=True):
    """
    Enable or disable all features in given class.

    .. note::
      Individual features that have been marked "deprecated" are not enabled by this function. They can still be enabled
      manually by a call to :py:func:`~radiomics.base.RadiomicsBase.enableFeatureByName()`,
      :py:func:`~radiomics.featureextractor.RadiomicsFeaturesExtractor.enableFeaturesByName()`
      or in the parameter file (by specifying the feature by name, not when enabling all features).
      However, in most cases this will still result only in a deprecation warning.
    """
    global logger

    if featureClass not in self.featureClassNames:
      logger.warning('Feature class %s is not recognized', featureClass)
      return

    if enabled:
      logger.debug('Enabling all features in class %s', featureClass)
      self.enabledFeatures[featureClass] = []
    elif featureClass in self.enabledFeatures:
      logger.debug('Disabling feature class %s', featureClass)
      del self.enabledFeatures[featureClass]
    logger.debug('Enabled features: %s', self.enabledFeatures)


[docs]  def enableFeaturesByName(self, **enabledFeatures):
    """
    Specify which features to enable. Key is feature class name, value is a list of enabled feature names.

    To enable all features for a class, provide the class name with an empty list or None as value.
    Settings for feature classes specified in enabledFeatures.keys are updated, settings for feature classes
    not yet present in enabledFeatures.keys are added.
    To disable the entire class, use :py:func:`disableAllFeatures` or :py:func:`enableFeatureClassByName` instead.
    """
    global logger

    logger.debug('Updating enabled features with %s', enabledFeatures)
    self.enabledFeatures.update(enabledFeatures)
    logger.debug('Enabled features: %s', self.enabledFeatures)
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  Source code for radiomics.firstorder

import numpy
from six.moves import range

from radiomics import base, cMatrices, deprecated


[docs]class RadiomicsFirstOrder(base.RadiomicsFeaturesBase):
  r"""
  First-order statistics describe the distribution of voxel intensities within the image region defined by the mask
  through commonly used and basic metrics.

  Let:

  - :math:`\textbf{X}` be a set of :math:`N_p` voxels included in the ROI
  - :math:`\textbf{P}(i)` be the first order histogram with :math:`N_g` discrete intensity levels,
    where :math:`N_g` is the number of non-zero bins, equally spaced from 0 with a width defined in the ``binWidth``
    parameter.
  - :math:`p(i)` be the normalized first order histogram and equal to :math:`\frac{\textbf{P}(i)}{N_p}`

  Following additional settings are possible:

  - voxelArrayShift [0]: Integer, This amount is added to the gray level intensity in features Energy, Total Energy and
    RMS, this is to prevent negative values. *If using CT data, or data normalized with mean 0, consider setting this
    parameter to a fixed value (e.g. 2000) that ensures non-negative numbers in the image. Bear in mind however, that
    the larger the value, the larger the volume confounding effect will be.*

  .. note::
    In the IBSI feature definitions, no correction for negative gray values is implemented. To achieve similar behaviour
    in PyRadiomics, set ``voxelArrayShift`` to 0.
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsFirstOrder, self).__init__(inputImage, inputMask, **kwargs)

    self.pixelSpacing = inputImage.GetSpacing()
    self.voxelArrayShift = kwargs.get('voxelArrayShift', 0)
    self.discretizedImageArray = self._applyBinning(self.imageArray.copy())

  def _initVoxelBasedCalculation(self):
    super(RadiomicsFirstOrder, self)._initVoxelBasedCalculation()

    kernelRadius = self.settings.get('kernelRadius', 1)

    # Get the size of the input, which depends on whether it is in masked mode or not
    if self.masked:
      size = numpy.max(self.labelledVoxelCoordinates, 1) - numpy.min(self.labelledVoxelCoordinates, 1) + 1
    else:
      size = numpy.array(self.imageArray.shape)

    # Take the minimum size along each dimension from either the size of the ROI or the kernel
    boundingBoxSize = numpy.minimum(size, kernelRadius * 2 + 1)

    # Calculate the offsets, which can be used to generate a list of kernel Coordinates. Shape (Nd, Nk)
    self.kernelOffsets = cMatrices.generate_angles(boundingBoxSize,
                                                   numpy.array(range(1, kernelRadius + 1)),
                                                   True,  # Bi-directional
                                                   self.settings.get('force2D', False),
                                                   self.settings.get('force2Ddimension', 0))
    self.kernelOffsets = numpy.append(self.kernelOffsets, [[0, 0, 0]], axis=0)  # add center voxel
    self.kernelOffsets = self.kernelOffsets.transpose((1, 0))

    self.imageArray = self.imageArray.astype('float')
    self.imageArray[~self.maskArray] = numpy.nan
    self.imageArray = numpy.pad(self.imageArray,
                                pad_width=self.settings.get('kernelRadius', 1),
                                mode='constant', constant_values=numpy.nan)
    self.maskArray = numpy.pad(self.maskArray,
                               pad_width=self.settings.get('kernelRadius', 1),
                               mode='constant', constant_values=False)

  def _initCalculation(self, voxelCoordinates=None):

    if voxelCoordinates is None:
      self.targetVoxelArray = self.imageArray[self.maskArray].astype('float').reshape((1, -1))
      _, p_i = numpy.unique(self.discretizedImageArray[self.maskArray], return_counts=True)
      p_i = p_i.reshape((1, -1))
    else:
      # voxelCoordinates shape (Nd, Nvox)
      voxelCoordinates = voxelCoordinates.copy() + self.settings.get('kernelRadius', 1)  # adjust for padding
      kernelCoords = self.kernelOffsets[:, None, :] + voxelCoordinates[:, :, None]  # Shape (Nd, Nvox, Nk)
      kernelCoords = tuple(kernelCoords)  # shape (Nd, (Nvox, Nk))

      self.targetVoxelArray = self.imageArray[kernelCoords]  # shape (Nvox, Nk)

      p_i = numpy.empty((voxelCoordinates.shape[1], len(self.coefficients['grayLevels'])))  # shape (Nvox, Ng)
      for gl_idx, gl in enumerate(self.coefficients['grayLevels']):
        p_i[:, gl_idx] = numpy.nansum(self.discretizedImageArray[kernelCoords] == gl, 1)

    sumBins = numpy.sum(p_i, 1, keepdims=True).astype('float')
    sumBins[sumBins == 0] = 1  # Prevent division by 0 errors
    p_i = p_i.astype('float') / sumBins
    self.coefficients['p_i'] = p_i

    self.logger.debug('First order feature class initialized')

  @staticmethod
  def _moment(a, moment=1):
    r"""
    Calculate n-order moment of an array for a given axis
    """

    if moment == 1:
      return numpy.float(0.0)
    else:
      mn = numpy.nanmean(a, 1, keepdims=True)
      s = numpy.power((a - mn), moment)
      return numpy.nanmean(s, 1)

[docs]  def getEnergyFeatureValue(self):
    r"""
    **1. Energy**

    .. math::
      \textit{energy} = \displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}

    Here, :math:`c` is optional value, defined by ``voxelArrayShift``, which shifts the intensities to prevent negative
    values in :math:`\textbf{X}`. This ensures that voxels with the lowest gray values contribute the least to Energy,
    instead of voxels with gray level intensity closest to 0.

    Energy is a measure of the magnitude of voxel values in an image. A larger values implies a greater sum of the
    squares of these values.

    .. note::
      This feature is volume-confounded, a larger value of :math:`c` increases the effect of volume-confounding.
    """

    shiftedParameterArray = self.targetVoxelArray + self.voxelArrayShift

    return numpy.nansum(shiftedParameterArray ** 2, 1)


[docs]  def getTotalEnergyFeatureValue(self):
    r"""
    **2. Total Energy**

    .. math::
      \textit{total energy} = V_{voxel}\displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}

    Here, :math:`c` is optional value, defined by ``voxelArrayShift``, which shifts the intensities to prevent negative
    values in :math:`\textbf{X}`. This ensures that voxels with the lowest gray values contribute the least to Energy,
    instead of voxels with gray level intensity closest to 0.

    Total Energy is the value of Energy feature scaled by the volume of the voxel in cubic mm.

    .. note::
      This feature is volume-confounded, a larger value of :math:`c` increases the effect of volume-confounding.

    .. note::
      Not present in IBSI feature definitions
    """

    cubicMMPerVoxel = numpy.multiply.reduce(self.pixelSpacing)

    return self.getEnergyFeatureValue() * cubicMMPerVoxel


[docs]  def getEntropyFeatureValue(self):
    r"""
    **3. Entropy**

    .. math::
      \textit{entropy} = -\displaystyle\sum^{N_g}_{i=1}{p(i)\log_2\big(p(i)+\epsilon\big)}

    Here, :math:`\epsilon` is an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`).

    Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of information
    required to encode the image values.

    .. note::
      Defined by IBSI as Intensity Histogram Entropy.
    """
    p_i = self.coefficients['p_i']

    eps = numpy.spacing(1)
    return -1.0 * numpy.sum(p_i * numpy.log2(p_i + eps), 1)


[docs]  def getMinimumFeatureValue(self):
    r"""
    **4. Minimum**

    .. math::
      \textit{minimum} = \min(\textbf{X})
    """

    return numpy.nanmin(self.targetVoxelArray, 1)


[docs]  def get10PercentileFeatureValue(self):
    r"""
    **5. 10th percentile**

    The 10\ :sup:`th` percentile of :math:`\textbf{X}`
    """
    return numpy.nanpercentile(self.targetVoxelArray, 10, axis=1)


[docs]  def get90PercentileFeatureValue(self):
    r"""
    **6. 90th percentile**

    The 90\ :sup:`th` percentile of :math:`\textbf{X}`
    """

    return numpy.nanpercentile(self.targetVoxelArray, 90, axis=1)


[docs]  def getMaximumFeatureValue(self):
    r"""
    **7. Maximum**

    .. math::
      \textit{maximum} = \max(\textbf{X})

    The maximum gray level intensity within the ROI.
    """

    return numpy.nanmax(self.targetVoxelArray, 1)


[docs]  def getMeanFeatureValue(self):
    r"""
    **8. Mean**

    .. math::
      \textit{mean} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{\textbf{X}(i)}

    The average gray level intensity within the ROI.
    """

    return numpy.nanmean(self.targetVoxelArray, 1)


[docs]  def getMedianFeatureValue(self):
    r"""
    **9. Median**

    The median gray level intensity within the ROI.
    """

    return numpy.nanmedian(self.targetVoxelArray, 1)


[docs]  def getInterquartileRangeFeatureValue(self):
    r"""
    **10. Interquartile Range**

    .. math::
      \textit{interquartile range} = \textbf{P}_{75} - \textbf{P}_{25}

    Here :math:`\textbf{P}_{25}` and :math:`\textbf{P}_{75}` are the 25\ :sup:`th` and 75\ :sup:`th` percentile of the
    image array, respectively.
    """

    return numpy.nanpercentile(self.targetVoxelArray, 75, 1) - numpy.nanpercentile(self.targetVoxelArray, 25, 1)


[docs]  def getRangeFeatureValue(self):
    r"""
    **11. Range**

    .. math::
      \textit{range} = \max(\textbf{X}) - \min(\textbf{X})

    The range of gray values in the ROI.
    """

    return numpy.nanmax(self.targetVoxelArray, 1) - numpy.nanmin(self.targetVoxelArray, 1)


[docs]  def getMeanAbsoluteDeviationFeatureValue(self):
    r"""
    **12. Mean Absolute Deviation (MAD)**

    .. math::
      \textit{MAD} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{|\textbf{X}(i)-\bar{X}|}

    Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value of the image array.
    """

    u_x = numpy.nanmean(self.targetVoxelArray, 1, keepdims=True)
    return numpy.nanmean(numpy.absolute(self.targetVoxelArray - u_x), 1)


[docs]  def getRobustMeanAbsoluteDeviationFeatureValue(self):
    r"""
    **13. Robust Mean Absolute Deviation (rMAD)**

    .. math::
      \textit{rMAD} = \frac{1}{N_{10-90}}\displaystyle\sum^{N_{10-90}}_{i=1}
      {|\textbf{X}_{10-90}(i)-\bar{X}_{10-90}|}

    Robust Mean Absolute Deviation is the mean distance of all intensity values
    from the Mean Value calculated on the subset of image array with gray levels in between, or equal
    to the 10\ :sup:`th` and 90\ :sup:`th` percentile.
    """

    prcnt10 = self.get10PercentileFeatureValue()
    prcnt90 = self.get90PercentileFeatureValue()
    percentileArray = self.targetVoxelArray.copy()

    # First get a mask for all valid voxels
    msk = ~numpy.isnan(percentileArray)
    # Then, update the mask to reflect all valid voxels that are outside the the closed 10-90th percentile range
    msk[msk] = ((percentileArray - prcnt10[:, None])[msk] < 0) | ((percentileArray - prcnt90[:, None])[msk] > 0)
    # Finally, exclude the invalid voxels by setting them to numpy.nan.
    percentileArray[msk] = numpy.nan

    return numpy.nanmean(numpy.absolute(percentileArray - numpy.nanmean(percentileArray, 1, keepdims=True)), 1)


[docs]  def getRootMeanSquaredFeatureValue(self):
    r"""
    **14. Root Mean Squared (RMS)**

    .. math::
      \textit{RMS} = \sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i) + c)^2}}

    Here, :math:`c` is optional value, defined by ``voxelArrayShift``, which shifts the intensities to prevent negative
    values in :math:`\textbf{X}`. This ensures that voxels with the lowest gray values contribute the least to RMS,
    instead of voxels with gray level intensity closest to 0.

    RMS is the square-root of the mean of all the squared intensity values. It is another measure of the magnitude of
    the image values. This feature is volume-confounded, a larger value of :math:`c` increases the effect of
    volume-confounding.
    """

    # If no voxels are segmented, prevent division by 0 and return 0
    if self.targetVoxelArray.size == 0:
      return 0

    shiftedParameterArray = self.targetVoxelArray + self.voxelArrayShift
    Nvox = numpy.sum(~numpy.isnan(self.targetVoxelArray), 1).astype('float')
    return numpy.sqrt(numpy.nansum(shiftedParameterArray ** 2, 1) / Nvox)


[docs]  @deprecated
  def getStandardDeviationFeatureValue(self):
    r"""
    **15. Standard Deviation**

    .. math::
      \textit{standard deviation} = \sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}}

    Standard Deviation measures the amount of variation or dispersion from the Mean Value. By definition,
    :math:`\textit{standard deviation} = \sqrt{\textit{variance}}`

    .. note::
      As this feature is correlated with variance, it is marked so it is not enabled by default.
      To include this feature in the extraction, specify it by name in the enabled features
      (i.e. this feature will not be enabled if no individual features are specified (enabling 'all' features),
      but will be enabled when individual features are specified, including this feature).
      Not present in IBSI feature definitions (correlated with variance)
    """

    return numpy.nanstd(self.targetVoxelArray, axis=1)


[docs]  def getSkewnessFeatureValue(self):
    r"""
    **16. Skewness**

    .. math::
      \textit{skewness} = \displaystyle\frac{\mu_3}{\sigma^3} =
      \frac{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^3}}
      {\left(\sqrt{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}}\right)^3}

    Where :math:`\mu_3` is the 3\ :sup:`rd` central moment.

    Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on where the tail is
    elongated and the mass of the distribution is concentrated, this value can be positive or negative.

    Related links:

    https://en.wikipedia.org/wiki/Skewness

    .. note::
      In case of a flat region, the standard deviation and 4\ :sup:`rd` central moment will be both 0. In this case, a
      value of 0 is returned.
    """

    m2 = self._moment(self.targetVoxelArray, 2)
    m3 = self._moment(self.targetVoxelArray, 3)

    m2[m2 == 0] = 1  # Flat Region, prevent division by 0 errors
    m3[m2 == 0] = 0  # ensure Flat Regions are returned as 0

    return m3 / m2 ** 1.5


[docs]  def getKurtosisFeatureValue(self):
    r"""
    **17. Kurtosis**

    .. math::
      \textit{kurtosis} = \displaystyle\frac{\mu_4}{\sigma^4} =
      \frac{\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^4}}
      {\left(\frac{1}{N_p}\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X}})^2\right)^2}

    Where :math:`\mu_4` is the 4\ :sup:`th` central moment.

    Kurtosis is a measure of the 'peakedness' of the distribution of values in the image ROI. A higher kurtosis implies
    that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean. A lower kurtosis
    implies the reverse: that the mass of the distribution is concentrated towards a spike near the Mean value.

    Related links:

    https://en.wikipedia.org/wiki/Kurtosis

    .. note::
      In case of a flat region, the standard deviation and 4\ :sup:`rd` central moment will be both 0. In this case, a
      value of 0 is returned.

    .. note::
      The IBSI feature definition implements excess kurtosis, where kurtosis is corrected by -3, yielding 0 for normal
      distributions. The PyRadiomics kurtosis is not corrected, yielding a value 3 higher than the IBSI kurtosis.
    """

    m2 = self._moment(self.targetVoxelArray, 2)
    m4 = self._moment(self.targetVoxelArray, 4)

    m2[m2 == 0] = 1  # Flat Region, prevent division by 0 errors
    m4[m2 == 0] = 0  # ensure Flat Regions are returned as 0

    return m4 / m2 ** 2.0


[docs]  def getVarianceFeatureValue(self):
    r"""
    **18. Variance**

    .. math::
      \textit{variance} = \frac{1}{N_p}\displaystyle\sum^{N_p}_{i=1}{(\textbf{X}(i)-\bar{X})^2}

    Variance is the the mean of the squared distances of each intensity value from the Mean value. This is a measure of
    the spread of the distribution about the mean. By definition, :math:`\textit{variance} = \sigma^2`
    """

    return numpy.nanstd(self.targetVoxelArray, 1) ** 2


[docs]  def getUniformityFeatureValue(self):
    r"""
    **19. Uniformity**

    .. math::
      \textit{uniformity} = \displaystyle\sum^{N_g}_{i=1}{p(i)^2}

    Uniformity is a measure of the sum of the squares of each intensity value. This is a measure of the homogeneity of
    the image array, where a greater uniformity implies a greater homogeneity or a smaller range of discrete intensity
    values.

    .. note::
      Defined by IBSI as Intensity Histogram Uniformity.
    """
    p_i = self.coefficients['p_i']
    return numpy.nansum(p_i ** 2, 1)
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  Source code for radiomics.generalinfo

import collections
import logging
import sys

import numpy
import pywt
import SimpleITK as sitk

import radiomics


[docs]class GeneralInfo:
  def __init__(self):
    self.logger = logging.getLogger(self.__module__)

    self.generalInfo_prefix = 'diagnostics_'

    self.generalInfo = collections.OrderedDict()
    self.addStaticElements()

[docs]  def getGeneralInfo(self):
    """
    Return a dictionary containing all general info items. Format is <info_item>:<value>, where the type
    of the value is preserved. For CSV format, this will result in conversion to string and quotes where necessary, for
    JSON, the values will be interpreted and stored as JSON strings.
    """
    return self.generalInfo


[docs]  def addStaticElements(self):
    """
    Adds the following elements to the general info:

    - Version: current version of PyRadiomics
    - NumpyVersion: version of numpy used
    - SimpleITKVersion: version SimpleITK used
    - PyWaveletVersion: version of PyWavelet used
    - PythonVersion: version of the python interpreter running PyRadiomics
    """

    self.generalInfo[self.generalInfo_prefix + 'Versions_PyRadiomics'] = radiomics.__version__
    self.generalInfo[self.generalInfo_prefix + 'Versions_Numpy'] = numpy.__version__
    self.generalInfo[self.generalInfo_prefix + 'Versions_SimpleITK'] = sitk.Version().VersionString()
    self.generalInfo[self.generalInfo_prefix + 'Versions_PyWavelet'] = pywt.__version__
    self.generalInfo[self.generalInfo_prefix + 'Versions_Python'] = '%i.%i.%i' % sys.version_info[:3]


[docs]  def addImageElements(self, image, prefix='original'):
    """
    Calculates provenance info for the image

    Adds the following:

    - Hash: sha1 hash of the mask, which can be used to check if the same mask was used during reproducibility
      tests. (Only added when prefix is "original")
    - Dimensionality: Number of dimensions (e.g. 2D, 3D) in the image. (Only added when prefix is "original")
    - Spacing: Pixel spacing (x, y, z) in mm.
    - Size: Dimensions (x, y, z) of the image in number of voxels.
    - Mean: Mean intensity value over all voxels in the image.
    - Minimum: Minimum intensity value among all voxels in the image.
    - Maximum: Maximum intensity value among all voxels in the image.

    A prefix is added to indicate what type of image is described:

    - original: Image as loaded, without pre-processing.
    - interpolated: Image after it has been resampled to a new spacing (includes cropping).
    """
    if prefix == 'original':
      self.generalInfo[self.generalInfo_prefix + 'Image-original_Hash'] = sitk.Hash(image)
      self.generalInfo[self.generalInfo_prefix + 'Image-original_Dimensionality'] = '%iD' % image.GetDimension()

    self.generalInfo[self.generalInfo_prefix + 'Image-' + prefix + '_Spacing'] = image.GetSpacing()
    self.generalInfo[self.generalInfo_prefix + 'Image-' + prefix + '_Size'] = image.GetSize()
    im_arr = sitk.GetArrayFromImage(image).astype('float')
    self.generalInfo[self.generalInfo_prefix + 'Image-' + prefix + '_Mean'] = numpy.mean(im_arr)
    self.generalInfo[self.generalInfo_prefix + 'Image-' + prefix + '_Minimum'] = numpy.min(im_arr)
    self.generalInfo[self.generalInfo_prefix + 'Image-' + prefix + '_Maximum'] = numpy.max(im_arr)


[docs]  def addMaskElements(self, image, mask, label, prefix='original'):
    """
    Calculates provenance info for the mask

    Adds the following:

    - MaskHash: sha1 hash of the mask, which can be used to check if the same mask was used during reproducibility
      tests. (Only added when prefix is "original")
    - BoundingBox: bounding box of the ROI defined by the specified label:
      Elements 0, 1 and 2 are the x, y and z coordinates of the lower bound, respectively.
      Elements 3, 4 and 5 are the size of the bounding box in x, y and z direction, respectively.
    - VoxelNum: Number of voxels included in the ROI defined by the specified label.
    - VolumeNum: Number of fully connected (26-connectivity) volumes in the ROI defined by the specified label.
    - CenterOfMassIndex: x, y and z coordinates of the center of mass of the ROI in terms of the image coordinate space
      (continuous index).
    - CenterOfMass: the real-world x, y and z coordinates of the center of mass of the ROI
    - ROIMean: Mean intensity value over all voxels in the ROI defined by the specified label.
    - ROIMinimum: Minimum intensity value among all voxels in the ROI defined by the specified label.
    - ROIMaximum: Maximum intensity value among all voxels in the ROI defined by the specified label.

    A prefix is added to indicate what type of mask is described:

    - original: Mask as loaded, without pre-processing.
    - corrected: Mask after it has been corrected by :py:func:`imageoperations.checkMask`.
    - interpolated: Mask after it has been resampled to a new spacing (includes cropping).
    - resegmented: Mask after resegmentation has been applied.
    """
    if mask is None:
      return

    if prefix == 'original':
      self.generalInfo[self.generalInfo_prefix + 'Mask-original_Hash'] = sitk.Hash(mask)

    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_Spacing'] = mask.GetSpacing()
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_Size'] = mask.GetSize()

    lssif = sitk.LabelShapeStatisticsImageFilter()
    lssif.Execute(mask)

    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_BoundingBox'] = lssif.GetBoundingBox(label)
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_VoxelNum'] = lssif.GetNumberOfPixels(label)

    labelMap = (mask == label)
    ccif = sitk.ConnectedComponentImageFilter()
    ccif.FullyConnectedOn()
    ccif.Execute(labelMap)
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_VolumeNum'] = ccif.GetObjectCount()

    ma_arr = sitk.GetArrayFromImage(labelMap) == 1
    maskCoordinates = numpy.array(numpy.where(ma_arr))
    center_index = tuple(numpy.mean(maskCoordinates, axis=1)[::-1])  # also convert z, y, x to x, y, z order

    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_CenterOfMassIndex'] = center_index

    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_CenterOfMass'] = mask.TransformContinuousIndexToPhysicalPoint(center_index)

    if image is None:
      return

    im_arr = sitk.GetArrayFromImage(image)
    targetvoxels = im_arr[ma_arr].astype('float')
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_Mean'] = numpy.mean(targetvoxels)
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_Minimum'] = numpy.min(targetvoxels)
    self.generalInfo[self.generalInfo_prefix + 'Mask-' + prefix + '_Maximum'] = numpy.max(targetvoxels)


[docs]  def addGeneralSettings(self, settings):
    """
    Add a string representation of the general settings.
    Format is {<settings_name>:<value>, ...}.
    """
    self.generalInfo[self.generalInfo_prefix + 'Configuration_Settings'] = settings


[docs]  def addEnabledImageTypes(self, enabledImageTypes):
    """
    Add a string representation of the enabled image types and any custom settings for each image type.
    Format is {<imageType_name>:{<setting_name>:<value>, ...}, ...}.
    """
    self.generalInfo[self.generalInfo_prefix + 'Configuration_EnabledImageTypes'] = enabledImageTypes
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  Source code for radiomics.glcm

import numpy
from six.moves import range

from radiomics import base, cMatrices, deprecated


[docs]class RadiomicsGLCM(base.RadiomicsFeaturesBase):
  r"""
  A Gray Level Co-occurrence Matrix (GLCM) of size :math:`N_g \times N_g` describes the second-order joint probability
  function of an image region constrained by the mask and is defined as :math:`\textbf{P}(i,j|\delta,\theta)`.
  The :math:`(i,j)^{\text{th}}` element of this matrix represents the number of times the combination of
  levels :math:`i` and :math:`j` occur in two pixels in the image, that are separated by a distance of :math:`\delta`
  pixels along angle :math:`\theta`.
  The distance :math:`\delta` from the center voxel is defined as the distance according to the infinity norm.
  For :math:`\delta=1`, this results in 2 neighbors for each of 13 angles in 3D (26-connectivity) and for
  :math:`\delta=2` a 98-connectivity (49 unique angles).

  Note that pyradiomics by default computes symmetrical GLCM!

  As a two dimensional example, let the following matrix :math:`\textbf{I}` represent a 5x5 image, having 5 discrete
  grey levels:

  .. math::
    \textbf{I} = \begin{bmatrix}
    1 & 2 & 5 & 2 & 3\\
    3 & 2 & 1 & 3 & 1\\
    1 & 3 & 5 & 5 & 2\\
    1 & 1 & 1 & 1 & 2\\
    1 & 2 & 4 & 3 & 5 \end{bmatrix}

  For distance :math:`\delta = 1` (considering pixels with a distance of 1 pixel from each other)
  and angle :math:`\theta=0^\circ` (horizontal plane, i.e. voxels to the left and right of the center voxel),
  the following symmetrical GLCM is obtained:

  .. math::
    \textbf{P} = \begin{bmatrix}
    6 & 4 & 3 & 0 & 0\\
    4 & 0 & 2 & 1 & 3\\
    3 & 2 & 0 & 1 & 2\\
    0 & 1 & 1 & 0 & 0\\
    0 & 3 & 2 & 0 & 2 \end{bmatrix}

  Let:

  - :math:`\epsilon` be an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`)
  - :math:`\textbf{P}(i,j)` be the co-occurence matrix for an arbitrary :math:`\delta` and :math:`\theta`
  - :math:`p(i,j)` be the normalized co-occurence matrix and equal to
    :math:`\frac{\textbf{P}(i,j)}{\sum{\textbf{P}(i,j)}}`
  - :math:`N_g` be the number of discrete intensity levels in the image
  - :math:`p_x(i) = \sum^{N_g}_{j=1}{P(i,j)}` be the marginal row probabilities
  - :math:`p_y(j) = \sum^{N_g}_{i=1}{P(i,j)}` be the marginal column probabilities
  - :math:`\mu_x` be the mean gray level intensity of :math:`p_x` and defined as
    :math:`\mu_x = \displaystyle\sum^{N_g}_{i=1}{p_x(i)i}`
  - :math:`\mu_y` be the mean gray level intensity of :math:`p_y` and defined as
    :math:`\mu_y = \displaystyle\sum^{N_g}_{j=1}{p_y(j)j}`
  - :math:`\sigma_x` be the standard deviation of :math:`p_x`
  - :math:`\sigma_y` be the standard deviation of :math:`p_y`
  - :math:`p_{x+y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }i+j=k,\text{ and }k=2,3,\dots,2N_g`
  - :math:`p_{x-y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }|i-j|=k,\text{ and }k=0,1,\dots,N_g-1`
  - :math:`HX =  -\sum^{N_g}_{i=1}{p_x(i)\log_2\big(p_x(i)+\epsilon\big)}` be the entropy of :math:`p_x`
  - :math:`HY =  -\sum^{N_g}_{j=1}{p_y(j)\log_2\big(p_y(j)+\epsilon\big)}` be the entropy of :math:`p_y`
  - :math:`HXY =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p(i,j)+\epsilon\big)}` be the entropy of
    :math:`p(i,j)`
  - :math:`HXY1 =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}`
  - :math:`HXY2 =  -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p_x(i)p_y(j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}`

  By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of these
  values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W and
  then summed and normalised. Features are then calculated on the resultant matrix.
  Weighting factor W is calculated for the distance between neighbouring voxels by:

  :math:`W = e^{-\|d\|^2}`, where d is the distance for the associated angle according
  to the norm specified in setting 'weightingNorm'.

  The following class specific settings are possible:

  - distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
    angles should be generated.
  - symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two directions per angle,
    which results in a symmetrical matrix, with equal distributions for :math:`i` and :math:`j`. A symmetrical matrix
    corresponds to the GLCM as defined by Haralick et al.
  - weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
    Enumerated setting, possible values:

    - 'manhattan': first order norm
    - 'euclidean': second order norm
    - 'infinity': infinity norm.
    - 'no_weighting': GLCMs are weighted by factor 1 and summed
    - None: Applies no weighting, mean of values calculated on separate matrices is returned.

    In case of other values, an warning is logged and option 'no_weighting' is used.

  References

  - Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification;
    IEEE Transactions on Systems, Man and Cybernetics; 1973(3), p610-621
  - `<https://en.wikipedia.org/wiki/Co-occurrence_matrix>`_
  - `<http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm>`_
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsGLCM, self).__init__(inputImage, inputMask, **kwargs)

    self.symmetricalGLCM = kwargs.get('symmetricalGLCM', True)
    self.weightingNorm = kwargs.get('weightingNorm', None)  # manhattan, euclidean, infinity

    self.P_glcm = None
    self.imageArray = self._applyBinning(self.imageArray)

  def _initCalculation(self, voxelCoordinates=None):
    self.P_glcm = self._calculateMatrix(voxelCoordinates)

    self._calculateCoefficients()

    self.logger.debug('GLCM feature class initialized, calculated GLCM with shape %s', self.P_glcm.shape)

  def _calculateMatrix(self, voxelCoordinates=None):
    r"""
    Compute GLCMs for the input image for every direction in 3D.
    Calculated GLCMs are placed in array P_glcm with shape (i/j, a)
    i/j = total gray-level bins for image array,
    a = directions in 3D (generated by imageoperations.generateAngles)
    """
    self.logger.debug('Calculating GLCM matrix in C')

    Ng = self.coefficients['Ng']

    matrix_args = [
      self.imageArray,
      self.maskArray,
      numpy.array(self.settings.get('distances', [1])),
      Ng,
      self.settings.get('force2D', False),
      self.settings.get('force2Ddimension', 0)
    ]
    if self.voxelBased:
      matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]

    P_glcm, angles = cMatrices.calculate_glcm(*matrix_args)

    self.logger.debug('Process calculated matrix')

    # Delete rows and columns that specify gray levels not present in the ROI
    NgVector = range(1, Ng + 1)  # All possible gray values
    GrayLevels = self.coefficients['grayLevels']  # Gray values present in ROI
    emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels)), dtype=int)  # Gray values NOT present in ROI

    P_glcm = numpy.delete(P_glcm, emptyGrayLevels - 1, 1)
    P_glcm = numpy.delete(P_glcm, emptyGrayLevels - 1, 2)

    # Optionally make GLCMs symmetrical for each angle
    if self.symmetricalGLCM:
      self.logger.debug('Create symmetrical matrix')
      # Transpose and copy GLCM and add it to P_glcm. Numpy.transpose returns a view if possible, use .copy() to ensure
      # a copy of the array is used and not just a view (otherwise erroneous additions can occur)
      P_glcm += numpy.transpose(P_glcm, (0, 2, 1, 3)).copy()

    # Optionally apply a weighting factor
    if self.weightingNorm is not None:
      self.logger.debug('Applying weighting (%s)', self.weightingNorm)
      pixelSpacing = self.inputImage.GetSpacing()[::-1]
      weights = numpy.empty(len(angles))
      for a_idx, a in enumerate(angles):
        if self.weightingNorm == 'infinity':
          weights[a_idx] = numpy.exp(-max(numpy.abs(a) * pixelSpacing) ** 2)
        elif self.weightingNorm == 'euclidean':
          weights[a_idx] = numpy.exp(-numpy.sum((numpy.abs(a) * pixelSpacing) ** 2))  # sqrt ^ 2 = 1
        elif self.weightingNorm == 'manhattan':
          weights[a_idx] = numpy.exp(-numpy.sum(numpy.abs(a) * pixelSpacing) ** 2)
        elif self.weightingNorm == 'no_weighting':
          weights[a_idx] = 1
        else:
          self.logger.warning('weigthing norm "%s" is unknown, W is set to 1', self.weightingNorm)
          weights[a_idx] = 1

      P_glcm = numpy.sum(P_glcm * weights[None, None, None, :], 3, keepdims=True)

    sumP_glcm = numpy.sum(P_glcm, (1, 2))

    # Delete empty angles if no weighting is applied
    if P_glcm.shape[3] > 1:
      emptyAngles = numpy.where(numpy.sum(sumP_glcm, 0) == 0)
      if len(emptyAngles[0]) > 0:  # One or more angles are 'empty'
        self.logger.debug('Deleting %d empty angles:\n%s', len(emptyAngles[0]), angles[emptyAngles])
        P_glcm = numpy.delete(P_glcm, emptyAngles, 3)
        sumP_glcm = numpy.delete(sumP_glcm, emptyAngles, 1)
      else:
        self.logger.debug('No empty angles')

    # Mark empty angles with NaN, allowing them to be ignored in feature calculation
    sumP_glcm[sumP_glcm == 0] = numpy.nan
    # Normalize each glcm
    P_glcm /= sumP_glcm[:, None, None, :]

    return P_glcm

  # check if ivector and jvector can be replaced
  def _calculateCoefficients(self):
    r"""
    Calculate and fill in the coefficients dict.
    """
    self.logger.debug('Calculating GLCM coefficients')

    Ng = self.coefficients['Ng']
    eps = numpy.spacing(1)

    NgVector = self.coefficients['grayLevels'].astype('float')
    # shape = (Ng, Ng)
    i, j = numpy.meshgrid(NgVector, NgVector, indexing='ij', sparse=True)

    # shape = (2*Ng-1)
    kValuesSum = numpy.arange(2, (Ng * 2) + 1, dtype='float')
    # shape = (Ng-1)
    kValuesDiff = numpy.arange(0, Ng, dtype='float')

    # marginal row probabilities #shape = (Nv, Ng, 1, angles)
    px = self.P_glcm.sum(2, keepdims=True)
    # marginal column probabilities #shape = (Nv, 1, Ng, angles)
    py = self.P_glcm.sum(1, keepdims=True)

    # shape = (Nv, 1, 1, angles)
    ux = numpy.sum(i[None, :, :, None] * self.P_glcm, (1, 2), keepdims=True)
    uy = numpy.sum(j[None, :, :, None] * self.P_glcm, (1, 2), keepdims=True)

    # shape = (Nv, 2*Ng-1, angles)
    pxAddy = numpy.array([numpy.sum(self.P_glcm[:, i + j == k, :], 1) for k in kValuesSum]).transpose((1, 0, 2))
    # shape = (Nv, Ng, angles)
    pxSuby = numpy.array([numpy.sum(self.P_glcm[:, numpy.abs(i - j) == k, :], 1) for k in kValuesDiff]).transpose((1, 0, 2))

    # shape = (Nv, angles)
    HXY = (-1) * numpy.sum((self.P_glcm * numpy.log2(self.P_glcm + eps)), (1, 2))

    self.coefficients['eps'] = eps
    self.coefficients['i'] = i
    self.coefficients['j'] = j
    self.coefficients['kValuesSum'] = kValuesSum
    self.coefficients['kValuesDiff'] = kValuesDiff
    self.coefficients['px'] = px
    self.coefficients['py'] = py
    self.coefficients['ux'] = ux
    self.coefficients['uy'] = uy
    self.coefficients['pxAddy'] = pxAddy
    self.coefficients['pxSuby'] = pxSuby
    self.coefficients['HXY'] = HXY

[docs]  def getAutocorrelationFeatureValue(self):
    r"""
    **1. Autocorrelation**

    .. math::
      \textit{autocorrelation} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)ij}

    Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.
    """
    i = self.coefficients['i']
    j = self.coefficients['j']
    ac = numpy.sum(self.P_glcm * (i * j)[None, :, :, None], (1, 2))
    return numpy.nanmean(ac, 1)


[docs]  def getJointAverageFeatureValue(self):
    r"""
    **2. Joint Average**

    .. math::
      \textit{joint average} = \mu_x = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)i}

    Returns the mean gray level intensity of the :math:`i` distribution.

    .. warning::
      As this formula represents the average of the distribution of :math:`i`, it is independent from the
      distribution of :math:`j`. Therefore, only use this formula if the GLCM is symmetrical, where
      :math:`p_x(i) = p_y(j) \text{, where } i = j`.
    """
    if not self.symmetricalGLCM:
      self.logger.warning('The formula for GLCM - Joint Average assumes that the GLCM is symmetrical, but this is not the case.')
    return self.coefficients['ux'].mean((1, 2, 3))


[docs]  def getClusterProminenceFeatureValue(self):
    r"""
    **3. Cluster Prominence**

    .. math::
      \textit{cluster prominence} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
      {\big( i+j-\mu_x-\mu_y\big)^4p(i,j)}

    Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies more asymmetry
    about the mean while a lower value indicates a peak near the mean value and less variation about the mean.
    """
    i = self.coefficients['i']
    j = self.coefficients['j']
    ux = self.coefficients['ux']
    uy = self.coefficients['uy']
    cp = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 4)), (1, 2))
    return numpy.nanmean(cp, 1)


[docs]  def getClusterShadeFeatureValue(self):
    r"""
    **4. Cluster Shade**

    .. math::
      \textit{cluster shade} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
      {\big(i+j-\mu_x-\mu_y\big)^3p(i,j)}

    Cluster Shade is a measure of the skewness and uniformity of the GLCM.
    A higher cluster shade implies greater asymmetry about the mean.
    """
    i = self.coefficients['i']
    j = self.coefficients['j']
    ux = self.coefficients['ux']
    uy = self.coefficients['uy']
    cs = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 3)), (1, 2))
    return numpy.nanmean(cs, 1)


[docs]  def getClusterTendencyFeatureValue(self):
    r"""
    **5. Cluster Tendency**

    .. math::
      \textit{cluster tendency} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
      {\big(i+j-\mu_x-\mu_y\big)^2p(i,j)}

    Cluster Tendency is a measure of groupings of voxels with similar gray-level values.
    """
    i = self.coefficients['i']
    j = self.coefficients['j']
    ux = self.coefficients['ux']
    uy = self.coefficients['uy']
    ct = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 2)), (1, 2))
    return numpy.nanmean(ct, 1)


[docs]  def getContrastFeatureValue(self):
    r"""
    **6. Contrast**

    .. math::
      \textit{contrast} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-j)^2p(i,j)}

    Contrast is a measure of the local intensity variation, favoring values away from the diagonal :math:`(i = j)`. A
    larger value correlates with a greater disparity in intensity values among neighboring voxels.
    """
    i = self.coefficients['i']
    j = self.coefficients['j']
    cont = numpy.sum((self.P_glcm * ((numpy.abs(i - j))[None, :, :, None] ** 2)), (1, 2))
    return numpy.nanmean(cont, 1)


[docs]  def getCorrelationFeatureValue(self):
    r"""
    **7. Correlation**

    .. math::
      \textit{correlation} = \frac{\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)ij-\mu_x\mu_y}}{\sigma_x(i)\sigma_y(j)}

    Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the
    linear dependency of gray level values to their respective voxels in the GLCM.

    .. note::
      When there is only 1 discreet gray value in the ROI (flat region), :math:`\sigma_x` and :math:`\sigma_y` will be
      0. In this case, an arbitrary value of 1 is returned instead. This is assessed on a per-angle basis.
    """
    eps = self.coefficients['eps']
    i = self.coefficients['i']
    j = self.coefficients['j']
    ux = self.coefficients['ux']
    uy = self.coefficients['uy']

    # shape = (Nv, 1, 1, angles)
    sigx = numpy.sum(self.P_glcm * ((i[None, :, :, None] - ux) ** 2), (1, 2), keepdims=True) ** 0.5
    # shape = (Nv, 1, 1, angles)
    sigy = numpy.sum(self.P_glcm * ((j[None, :, :, None] - uy) ** 2), (1, 2), keepdims=True) ** 0.5

    corm = numpy.sum(self.P_glcm * (i[None, :, :, None] - ux) * (j[None, :, :, None] - uy), (1, 2), keepdims=True)
    corr = corm / (sigx * sigy + eps)
    corr[sigx * sigy == 0] = 1  # Set elements that would be divided by 0 to 1.
    return numpy.nanmean(corr, (1, 2, 3))


[docs]  def getDifferenceAverageFeatureValue(self):
    r"""
    **8. Difference Average**

    .. math::
      \textit{difference average} = \displaystyle\sum^{N_g-1}_{k=0}{kp_{x-y}(k)}

    Difference Average measures the relationship between occurrences of pairs
    with similar intensity values and occurrences of pairs with differing intensity
    values.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    diffavg = numpy.sum((kValuesDiff[None, :, None] * pxSuby), 1)
    return numpy.nanmean(diffavg, 1)


[docs]  def getDifferenceEntropyFeatureValue(self):
    r"""
    **9. Difference Entropy**

    .. math::
      \textit{difference entropy} = \displaystyle\sum^{N_g-1}_{k=0}{p_{x-y}(k)\log_2\big(p_{x-y}(k)+\epsilon\big)}

    Difference Entropy is a measure of the randomness/variability
    in neighborhood intensity value differences.
    """
    pxSuby = self.coefficients['pxSuby']
    eps = self.coefficients['eps']
    difent = (-1) * numpy.sum((pxSuby * numpy.log2(pxSuby + eps)), 1)
    return numpy.nanmean(difent, 1)


[docs]  def getDifferenceVarianceFeatureValue(self):
    r"""
    **10. Difference Variance**

    .. math::
      \textit{difference variance} = \displaystyle\sum^{N_g-1}_{k=0}{(k-DA)^2p_{x-y}(k)}

    Difference Variance is a measure of heterogeneity that places higher weights on
    differing intensity level pairs that deviate more from the mean.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    diffavg = numpy.sum((kValuesDiff[None, :, None] * pxSuby), 1, keepdims=True)
    diffvar = numpy.sum((pxSuby * ((kValuesDiff[None, :, None] - diffavg) ** 2)), 1)
    return numpy.nanmean(diffvar, 1)


[docs]  @deprecated
  def getDissimilarityFeatureValue(self):
    r"""
    **DEPRECATED. Dissimilarity**

    .. math::

      \textit{dissimilarity} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{|i-j|p(i,j)}

    .. warning::
      This feature has been deprecated, as it is mathematically equal to Difference Average
      :py:func:`~radiomics.glcm.RadiomicsGLCM.getDifferenceAverageFeatureValue()`.
      See :ref:`here <radiomics-excluded-dissimilarity-label>` for the proof. **Enabling this feature will result in the
      logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
    """
    raise DeprecationWarning('GLCM - Dissimilarity is mathematically equal to GLCM - Difference Average, '
                             'see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more details')


[docs]  def getJointEnergyFeatureValue(self):
    r"""
    **11. Joint Energy**

    .. math::
      \textit{joint energy} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\big(p(i,j)\big)^2}

    Energy is a measure of homogeneous patterns
    in the image. A greater Energy implies that there are more instances
    of intensity value pairs in the image that neighbor each other at
    higher frequencies.

    .. note::
      Defined by IBSI as Angular Second Moment.
    """
    ene = numpy.sum((self.P_glcm ** 2), (1, 2))
    return numpy.nanmean(ene, 1)


[docs]  def getJointEntropyFeatureValue(self):
    r"""
    **12. Joint Entropy**

    .. math::
      \textit{joint entropy} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
      {p(i,j)\log_2\big(p(i,j)+\epsilon\big)}


    Joint entropy is a measure of the randomness/variability in neighborhood intensity values.

    .. note::
      Defined by IBSI as Joint entropy
    """
    ent = self.coefficients['HXY']
    return numpy.nanmean(ent, 1)


[docs]  @deprecated
  def getHomogeneity1FeatureValue(self):
    r"""
    **DEPRECATED. Homogeneity 1**

    .. math::

      \textit{homogeneity 1} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|}}

    .. warning::
      This feature has been deprecated, as it is mathematically equal to Inverse Difference
      :py:func:`~radiomics.glcm.RadiomicsGLCM.getIdFeatureValue()`. **Enabling this feature will result in the
      logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
    """
    raise DeprecationWarning('GLCM - Homogeneity 1 is mathematically equal to GLCM - Inverse Difference, '
                             'see documentation of the GLCM feature class (section "Radiomic Features") for more details')


[docs]  @deprecated
  def getHomogeneity2FeatureValue(self):
    r"""
    **DEPRECATED. Homogeneity 2**

    .. math::

      \textit{homogeneity 2} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|^2}}

    .. warning::
      This feature has been deprecated, as it is mathematically equal to Inverse Difference Moment
      :py:func:`~radiomics.glcm.RadiomicsGLCM.getIdmFeatureValue()`. **Enabling this feature will result in the
      logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
    """
    raise DeprecationWarning('GLCM - Homogeneity 2 is mathematically equal to GLCM - Inverse Difference Moment, '
                             'see documentation of the GLCM feature class (section "Radiomic Features") for more details')


[docs]  def getImc1FeatureValue(self):
    r"""
    **13. Informational Measure of Correlation (IMC) 1**

    .. math::

      \textit{IMC 1} = \displaystyle\frac{HXY-HXY1}{\max\{HX,HY\}}

    IMC1 assesses the correlation between the probability distributions of :math:`i` and :math:`j` (quantifying the
    complexity of the texture), using mutual information I(x, y):

    .. math::

      I(i, j) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(\frac{p(i,j)}{p_x(i)p_y(j)}\big)}

              = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\big(\log_2 (p(i,j)) - \log_2 (p_x(i)p_y(j))\big)}

              = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p(i,j)\big)} -
                \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p_x(i)p_y(j)\big)}

              = -HXY + HXY1

    However, in this formula, the numerator is defined as HXY - HXY1 (i.e. :math:`-I(x, y)`), and is
    therefore :math:`\leq 0`. This reflects how this feature is defined in the original Haralick paper.

    In the case where the distributions are independent, there is no mutual information and the result will therefore be
    0. In the case of uniform distribution with complete dependence, mutual information will be equal to
    :math:`\log_2(N_g)`.

    Finally, :math:`HXY - HXY1` is divided by the maximum of the 2 marginal entropies, where in the latter case of
    complete dependence (not necessarily uniform; low complexity) it will result in :math:`IMC1 = -1`, as
    :math:`HX = HY = I(i, j)`.

    .. note::

      In the case where both HX and HY are 0 (as is the case in a flat region), an arbitrary value of 0 is returned to
      prevent a division by 0. This is done on a per-angle basis (i.e. prior to any averaging).
    """
    HXY = self.coefficients['HXY']

    eps = self.coefficients['eps']
    px = self.coefficients['px']
    py = self.coefficients['py']

    # entropy of px # shape = (Nv, angles)
    HX = (-1) * numpy.sum((px * numpy.log2(px + eps)), (1, 2))
    # entropy of py # shape = (Nv, angles)
    HY = (-1) * numpy.sum((py * numpy.log2(py + eps)), (1, 2))
    # shape = (Nv, angles)
    HXY1 = (-1) * numpy.sum((self.P_glcm * numpy.log2(px * py + eps)), (1, 2))

    div = numpy.fmax(HX, HY)

    imc1 = HXY - HXY1
    imc1[div != 0] /= div[div != 0]
    imc1[div == 0] = 0  # Set elements that would be divided by 0 to 0

    return numpy.nanmean(imc1, 1)


[docs]  def getImc2FeatureValue(self):
    r"""
    **14. Informational Measure of Correlation (IMC) 2**

    .. math::

      \textit{IMC 2} = \displaystyle\sqrt{1-e^{-2(HXY2-HXY)}}

    IMC2 also assesses the correlation between the probability distributions of :math:`i` and :math:`j` (quantifying the
    complexity of the texture). Of interest is to note that :math:`HXY1 = HXY2` and that :math:`HXY2 - HXY \geq 0`
    represents the mutual information of the 2 distributions. Therefore, the range of IMC2 = [0, 1), with 0 representing
    the case of 2 independent distributions (no mutual information) and the maximum value representing the case of 2
    fully dependent and uniform distributions (maximal mutual information, equal to :math:`\log_2(N_g)`). In this latter
    case, the maximum value is then equal to :math:`\displaystyle\sqrt{1-e^{-2\log_2(N_g)}}`, approaching 1.

    .. note::

      Due to machine precision errors, it is possble that HXY > HXY2, which would result in returning complex numbers.
      In these cases, a value of 0 is returned for IMC2. This is done on a per-angle basis (i.e. prior to any
      averaging).
    """
    HXY = self.coefficients['HXY']

    eps = self.coefficients['eps']
    px = self.coefficients['px']
    py = self.coefficients['py']

    # shape = (Nv, angles)
    HXY2 = (-1) * numpy.sum(((px * py) * numpy.log2(px * py + eps)), (1, 2))

    imc2 = (1 - numpy.e ** (-2 * (HXY2 - HXY))) ** 0.5
    imc2[HXY2 == HXY] = 0

    return numpy.nanmean(imc2, 1)


[docs]  def getIdmFeatureValue(self):
    r"""
    **15. Inverse Difference Moment (IDM)**

    .. math::
      \textit{IDM} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k^2}}

    IDM (a.k.a Homogeneity 2) is a measure of the local
    homogeneity of an image. IDM weights are the inverse of the Contrast
    weights (decreasing exponentially from the diagonal i=j in the GLCM).
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    idm = numpy.sum(pxSuby / (1 + (kValuesDiff[None, :, None] ** 2)), 1)
    return numpy.nanmean(idm, 1)


[docs]  def getMCCFeatureValue(self):
    r"""
    **16. Maximal Correlation Coefficient (MCC)**

    .. math::
      \textit{MCC} = \sqrt{\text{second largest eigenvalue of Q}}

      Q(i, j) = \displaystyle\sum^{N_g}_{k=0}{\frac{p(i,k)p(j, k)}{p_x(i)p_y(k)}}

    The Maximal Correlation Coefficient is a measure of complexity of the texture and :math:`0 \leq MCC \leq 1`.

    In case of a flat region, each GLCM matrix has shape (1, 1), resulting in just 1 eigenvalue. In this case, an
    arbitrary value of 1 is returned.
    """
    px = self.coefficients['px']
    py = self.coefficients['py']
    eps = self.coefficients['eps']

    # Calculate Q (shape (i, i, d)). To prevent division by 0, add epsilon (such a division can occur when in a ROI
    # along a certain angle, voxels with gray level i do not have neighbors
    Q = ((self.P_glcm[:, :, None, 0, :] * self.P_glcm[:, None, :, 0, :]) /  # slice: v, i, j, k, d
         (px[:, :, None, 0, :] * py[:, None, :, 0, :] + eps))  # sum over k (4th axis --> index 3)

    for gl in range(1, self.P_glcm.shape[1]):
      Q += ((self.P_glcm[:, :, None, gl, :] * self.P_glcm[:, None, :, gl, :]) /  # slice: v, i, j, k, d
            (px[:, :, None, 0, :] * py[:, None, :, gl, :] + eps))  # sum over k (4th axis --> index 3)

    # calculation of eigenvalues if performed on last 2 dimensions, therefore, move the angles dimension (d) forward
    Q_eigenValue = numpy.linalg.eigvals(Q.transpose((0, 3, 1, 2)))
    Q_eigenValue.sort()  # sorts along last axis --> eigenvalues, low to high

    if Q_eigenValue.shape[2] < 2:
      return 1  # flat region

    MCC = numpy.sqrt(Q_eigenValue[:, :, -2])  # 2nd highest eigenvalue

    return numpy.nanmean(MCC, 1).real


[docs]  def getIdmnFeatureValue(self):
    r"""
    **17. Inverse Difference Moment Normalized (IDMN)**

    .. math::
      \textit{IDMN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k^2}{N_g^2}\right)} }

    IDMN (inverse difference moment normalized)  is a measure of the local
    homogeneity of an image. IDMN weights are the inverse of the Contrast
    weights (decreasing exponentially from the diagonal :math:`i=j` in the GLCM).
    Unlike Homogeneity2, IDMN normalizes the square of the difference between
    neighboring intensity values by dividing over the square of the total
    number of discrete intensity values.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    Ng = self.coefficients['Ng']
    idmn = numpy.sum(pxSuby / (1 + ((kValuesDiff[None, :, None] ** 2) / (Ng ** 2))), 1)
    return numpy.nanmean(idmn, 1)


[docs]  def getIdFeatureValue(self):
    r"""
    **18. Inverse Difference (ID)**

    .. math::
      \textit{ID} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k}}

    ID (a.k.a. Homogeneity 1) is another measure of the local homogeneity of an image.
    With more uniform gray levels, the denominator will remain low, resulting in a higher overall value.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    invDiff = numpy.sum(pxSuby / (1 + kValuesDiff[None, :, None]), 1)
    return numpy.nanmean(invDiff, 1)


[docs]  def getIdnFeatureValue(self):
    r"""
    **19. Inverse Difference Normalized (IDN)**

    .. math::
      \textit{IDN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k}{N_g}\right)} }

    IDN (inverse difference normalized) is another measure of the local
    homogeneity of an image. Unlike Homogeneity1, IDN normalizes the difference
    between the neighboring intensity values by dividing over the total number
    of discrete intensity values.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    Ng = self.coefficients['Ng']
    idn = numpy.sum(pxSuby / (1 + (kValuesDiff[None, :, None] / Ng)), 1)
    return numpy.nanmean(idn, 1)


[docs]  def getInverseVarianceFeatureValue(self):
    r"""
    **20. Inverse Variance**

    .. math::
      \textit{inverse variance} = \displaystyle\sum^{N_g-1}_{k=1}{\frac{p_{x-y}(k)}{k^2}}

    Note that :math:`k=0` is skipped, as this would result in a division by 0.
    """
    pxSuby = self.coefficients['pxSuby']
    kValuesDiff = self.coefficients['kValuesDiff']
    inv = numpy.sum(pxSuby[:, 1:, :] / kValuesDiff[None, 1:, None] ** 2, 1)  # Skip k = 0 (division by 0)
    return numpy.nanmean(inv, 1)


[docs]  def getMaximumProbabilityFeatureValue(self):
    r"""
    **21. Maximum Probability**

    .. math::

      \textit{maximum probability} = \max\big(p(i,j)\big)

    Maximum Probability is occurrences of the most predominant pair of
    neighboring intensity values.

    .. note::
      Defined by IBSI as Joint maximum
    """
    maxprob = numpy.amax(self.P_glcm, (1, 2))
    return numpy.nanmean(maxprob, 1)


[docs]  def getSumAverageFeatureValue(self):
    r"""
    **22. Sum Average**

    .. math::

      \textit{sum average} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)k}

    Sum Average measures the relationship between occurrences of pairs
    with lower intensity values and occurrences of pairs with higher intensity
    values.

    .. warning::
      When GLCM is symmetrical, :math:`\mu_x = \mu_y`, and therefore :math:`\text{Sum Average} = \mu_x + \mu_y =
      2 \mu_x = 2 * Joint Average`. See formulas (4.), (5.) and (6.) defined
      :ref:`here <radiomics-excluded-sumvariance-label>` for the proof that :math:`\text{Sum Average} = \mu_x + \mu_y`.
      In the default parameter files provided in the ``examples/exampleSettings``, this feature has been disabled.
    """
    # warn the user if the GLCM is symmetrical and this feature is calculated (as it is then linearly correlated to Joint Average)
    if self.symmetricalGLCM:
      self.logger.warning('GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated')

    pxAddy = self.coefficients['pxAddy']
    kValuesSum = self.coefficients['kValuesSum']
    sumavg = numpy.sum((kValuesSum[None, :, None] * pxAddy), 1)
    return numpy.nanmean(sumavg, 1)


[docs]  @deprecated
  def getSumVarianceFeatureValue(self):
    r"""
    **DEPRECATED. Sum Variance**

    .. math::
      \textit{sum variance} = \displaystyle\sum^{2N_g}_{k=2}{(k-SA)^2p_{x+y}(k)}

    .. warning::
      This feature has been deprecated, as it is mathematically equal to Cluster Tendency
      :py:func:`~radiomics.glcm.RadiomicsGLCM.getClusterTendencyFeatureValue()`.
      See :ref:`here <radiomics-excluded-sumvariance-label>` for the proof. **Enabling this feature will result in the
      logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
    """
    raise DeprecationWarning('GLCM - Sum Variance is mathematically equal to GLCM - Cluster Tendency, '
                             'see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more details')


[docs]  def getSumEntropyFeatureValue(self):
    r"""
    **23. Sum Entropy**

    .. math::

      \textit{sum entropy} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)\log_2\big(p_{x+y}(k)+\epsilon\big)}

    Sum Entropy is a sum of neighborhood intensity value differences.
    """
    pxAddy = self.coefficients['pxAddy']
    eps = self.coefficients['eps']
    sumentr = (-1) * numpy.sum((pxAddy * numpy.log2(pxAddy + eps)), 1)
    return numpy.nanmean(sumentr, 1)


[docs]  def getSumSquaresFeatureValue(self):
    r"""
    **24. Sum of Squares**

    .. math::

      \textit{sum squares} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-\mu_x)^2p(i,j)}

    Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs
    about the mean intensity level in the GLCM.

    .. warning::

      This formula represents the variance of the distribution of :math:`i` and is independent from the distribution
      of :math:`j`. Therefore, only use this formula if the GLCM is symmetrical, where
      :math:`p_x(i) = p_y(j) \text{, where } i = j`

    .. note::
      Defined by IBSI as Joint Variance
    """
    if not self.symmetricalGLCM:
      self.logger.warning('The formula for GLCM - Sum of Squares assumes that the GLCM is symmetrical, but this is not the case.')
    i = self.coefficients['i']
    ux = self.coefficients['ux']
    # Also known as Variance
    ss = numpy.sum((self.P_glcm * ((i[None, :, :, None] - ux) ** 2)), (1, 2))
    return numpy.nanmean(ss, 1)
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  Source code for radiomics.gldm

import numpy

from radiomics import base, cMatrices, deprecated


[docs]class RadiomicsGLDM(base.RadiomicsFeaturesBase):
  r"""
  A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an image.
  A gray level dependency is defined as a the number of connected voxels within distance :math:`\delta` that are
  dependent on the center voxel.
  A neighbouring voxel with gray level :math:`j` is considered dependent on center voxel with gray level :math:`i`
  if :math:`|i-j|\le\alpha`. In a gray level dependence matrix :math:`\textbf{P}(i,j)` the :math:`(i,j)`\ :sup:`th`
  element describes the number of times a voxel with gray level :math:`i` with :math:`j` dependent voxels
  in its neighbourhood appears in image.

  As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

  .. math::
    \textbf{I} = \begin{bmatrix}
    5 & 2 & 5 & 4 & 4\\
    3 & 3 & 3 & 1 & 3\\
    2 & 1 & 1 & 1 & 3\\
    4 & 2 & 2 & 2 & 3\\
    3 & 5 & 3 & 3 & 2 \end{bmatrix}

  For :math:`\alpha=0` and :math:`\delta = 1`, the GLDM then becomes:

  .. math::
    \textbf{P} = \begin{bmatrix}
    0 & 1 & 2 & 1 \\
    1 & 2 & 3 & 0 \\
    1 & 4 & 4 & 0 \\
    1 & 2 & 0 & 0 \\
    3 & 0 & 0 & 0 \end{bmatrix}

  Let:

  - :math:`N_g` be the number of discreet intensity values in the image
  - :math:`N_d` be the number of discreet dependency sizes in the image
  - :math:`N_z` be the number of dependency zones in the image, which is equal to
    :math:`\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)}`
  - :math:`\textbf{P}(i,j)` be the dependence matrix
  - :math:`p(i,j)` be the normalized dependence matrix, defined as :math:`p(i,j) = \frac{\textbf{P}(i,j)}{N_z}`

  .. note::
    Because incomplete zones are allowed, every voxel in the ROI has a dependency zone. Therefore, :math:`N_z = N_p`,
    where :math:`N_p` is the number of voxels in the image.
    Due to the fact that :math:`Nz = N_p`, the Dependence Percentage and Gray Level Non-Uniformity Normalized (GLNN)
    have been removed. The first because it would always compute to 1, the latter because it is mathematically equal to
    first order - Uniformity (see :py:func:`~radiomics.firstorder.RadiomicsFirstOrder.getUniformityFeatureValue()`). For
    mathematical proofs, see :ref:`here <radiomics-excluded-gldm-label>`.

  The following class specific settings are possible:

  - distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
    angles should be generated.
  - gldm_a [0]: float, :math:`\alpha` cutoff value for dependence. A neighbouring voxel with gray level :math:`j` is
    considered dependent on center voxel with gray level :math:`i` if :math:`|i-j|\le\alpha`

  References:

  - Sun C, Wee WG. Neighboring Gray Level Dependence Matrix for Texture Classification. Comput Vision,
    Graph Image Process. 1983;23:341-352
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsGLDM, self).__init__(inputImage, inputMask, **kwargs)

    self.gldm_a = kwargs.get('gldm_a', 0)

    self.P_gldm = None
    self.imageArray = self._applyBinning(self.imageArray)

  def _initCalculation(self, voxelCoordinates=None):
    self.P_gldm = self._calculateMatrix(voxelCoordinates)

    self.logger.debug('Feature class initialized, calculated GLDM with shape %s', self.P_gldm.shape)

  def _calculateMatrix(self, voxelCoordinates=None):
    self.logger.debug('Calculating GLDM matrix in C')

    Ng = self.coefficients['Ng']

    matrix_args = [
      self.imageArray,
      self.maskArray,
      numpy.array(self.settings.get('distances', [1])),
      Ng,
      self.gldm_a,
      self.settings.get('force2D', False),
      self.settings.get('force2Ddimension', 0)
    ]
    if self.voxelBased:
      matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]

    P_gldm = cMatrices.calculate_gldm(*matrix_args)  # shape (Nv, Ng, Nd)

    # Delete rows that specify gray levels not present in the ROI
    NgVector = range(1, Ng + 1)  # All possible gray values
    GrayLevels = self.coefficients['grayLevels']  # Gray values present in ROI
    emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels)), dtype=int)  # Gray values NOT present in ROI

    P_gldm = numpy.delete(P_gldm, emptyGrayLevels - 1, 1)

    jvector = numpy.arange(1, P_gldm.shape[2] + 1, dtype='float64')

    # shape (Nv, Nd)
    pd = numpy.sum(P_gldm, 1)
    # shape (Nv, Ng)
    pg = numpy.sum(P_gldm, 2)

    # Delete columns that dependence sizes not present in the ROI
    empty_sizes = numpy.sum(pd, 0)
    P_gldm = numpy.delete(P_gldm, numpy.where(empty_sizes == 0), 2)
    jvector = numpy.delete(jvector, numpy.where(empty_sizes == 0))
    pd = numpy.delete(pd, numpy.where(empty_sizes == 0), 1)

    Nz = numpy.sum(pd, 1)  # Nz per kernel, shape (Nv, )
    Nz[Nz == 0] = 1  # set sum to numpy.spacing(1) if sum is 0?

    self.coefficients['Nz'] = Nz

    self.coefficients['pd'] = pd
    self.coefficients['pg'] = pg

    self.coefficients['ivector'] = self.coefficients['grayLevels'].astype(float)
    self.coefficients['jvector'] = jvector

    return P_gldm

[docs]  def getSmallDependenceEmphasisFeatureValue(self):
    r"""
    **1. Small Dependence Emphasis (SDE)**

    .. math::
      SDE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}

    A measure of the distribution of small dependencies, with a greater value indicative
    of smaller dependence and less homogeneous textures.
    """
    pd = self.coefficients['pd']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']  # Nz = Np, see class docstring

    sde = numpy.sum(pd / (jvector[None, :] ** 2), 1) / Nz
    return sde


[docs]  def getLargeDependenceEmphasisFeatureValue(self):
    r"""
    **2. Large Dependence Emphasis (LDE)**

    .. math::
      LDE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)j^2}}{N_z}

    A measure of the distribution of large dependencies, with a greater value indicative
    of larger dependence and more homogeneous textures.
    """
    pd = self.coefficients['pd']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    lre = numpy.sum(pd * (jvector[None, :] ** 2), 1) / Nz
    return lre


[docs]  def getGrayLevelNonUniformityFeatureValue(self):
    r"""
    **3. Gray Level Non-Uniformity (GLN)**

    .. math::
      GLN = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z}

    Measures the similarity of gray-level intensity values in the image, where a lower GLN value
    correlates with a greater similarity in intensity values.
    """
    pg = self.coefficients['pg']
    Nz = self.coefficients['Nz']

    gln = numpy.sum(pg ** 2, 1) / Nz
    return gln


[docs]  @deprecated
  def getGrayLevelNonUniformityNormalizedFeatureValue(self):
    r"""
    **DEPRECATED. Gray Level Non-Uniformity Normalized (GLNN)**

    :math:`GLNN = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_d}_{j=1}{\textbf{P}(i,j)}\right)^2}{\sum^{N_g}_{i=1}
    \sum^{N_d}_{j=1}{\textbf{P}(i,j)}^2}`

    .. warning::
      This feature has been deprecated, as it is mathematically equal to First Order - Uniformity
      :py:func:`~radiomics.firstorder.RadiomicsFirstOrder.getUniformityFeatureValue()`.
      See :ref:`here <radiomics-excluded-gldm-glnn-label>` for the proof. **Enabling this feature will result in the
      logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for
      this feature**
    """
    raise DeprecationWarning('GLDM - Gray Level Non-Uniformity Normalized is mathematically equal to First Order - '
                             'Uniformity, see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more'
                             'details')


[docs]  def getDependenceNonUniformityFeatureValue(self):
    r"""
    **4. Dependence Non-Uniformity (DN)**

    .. math::
      DN = \frac{\sum^{N_d}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z}

    Measures the similarity of dependence throughout the image, with a lower value indicating
    more homogeneity among dependencies in the image.
    """
    pd = self.coefficients['pd']
    Nz = self.coefficients['Nz']

    dn = numpy.sum(pd ** 2, 1) / Nz
    return dn


[docs]  def getDependenceNonUniformityNormalizedFeatureValue(self):
    r"""
    **5. Dependence Non-Uniformity Normalized (DNN)**

    .. math::
      DNN = \frac{\sum^{N_d}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}

    Measures the similarity of dependence throughout the image, with a lower value indicating
    more homogeneity among dependencies in the image. This is the normalized version of the DLN formula.
    """
    pd = self.coefficients['pd']
    Nz = self.coefficients['Nz']

    dnn = numpy.sum(pd ** 2, 1) / Nz ** 2
    return dnn


[docs]  def getGrayLevelVarianceFeatureValue(self):
    r"""
    **6. Gray Level Variance (GLV)**

    .. math::
      GLV = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)(i - \mu)^2} \text{, where}
      \mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{ip(i,j)}

    Measures the variance in grey level in the image.
    """
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']
    pg = self.coefficients['pg'] / Nz[:, None]  # divide by Nz to get the normalized matrix

    u_i = numpy.sum(pg * ivector[None, :], 1, keepdims=True)
    glv = numpy.sum(pg * (ivector[None, :] - u_i) ** 2, 1)
    return glv


[docs]  def getDependenceVarianceFeatureValue(self):
    r"""
    **7. Dependence Variance (DV)**

    .. math::
      DV = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)(j - \mu)^2} \text{, where}
      \mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{jp(i,j)}

    Measures the variance in dependence size in the image.
    """
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']
    pd = self.coefficients['pd'] / Nz[:, None]  # divide by Nz to get the normalized matrix

    u_j = numpy.sum(pd * jvector[None, :], 1, keepdims=True)
    dv = numpy.sum(pd * (jvector[None, :] - u_j) ** 2, 1)
    return dv


[docs]  def getDependenceEntropyFeatureValue(self):
    r"""
    **8. Dependence Entropy (DE)**

    .. math::
      Dependence Entropy = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_d}_{j=1}{p(i,j)\log_{2}(p(i,j)+\epsilon)}
    """
    eps = numpy.spacing(1)
    Nz = self.coefficients['Nz']
    p_gldm = self.P_gldm / Nz[:, None, None]  # divide by Nz to get the normalized matrix

    return -numpy.sum(p_gldm * numpy.log2(p_gldm + eps), (1, 2))


[docs]  @deprecated
  def getDependencePercentageFeatureValue(self):
    r"""
    **DEPRECATED. Dependence Percentage**

    .. math::
      \textit{dependence percentage} = \frac{N_z}{N_p}

    .. warning::
      This feature has been deprecated, as it would always compute 1. See
      :ref:`here <radiomics-excluded-gldm-dependence-percentage-label>` for more details. **Enabling this feature will
      result in the logging of a DeprecationWarning (does not interrupt extraction of other features), no value is
      calculated for this features**
    """
    raise DeprecationWarning('GLDM - Dependence Percentage always computes 1, '
                             'see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more details')


[docs]  def getLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **9. Low Gray Level Emphasis (LGLE)**

    .. math::
      LGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}

    Measures the distribution of low gray-level values, with a higher value indicating a greater
    concentration of low gray-level values in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']

    lgle = numpy.sum(pg / (ivector[None, :] ** 2), 1) / Nz
    return lgle


[docs]  def getHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **10. High Gray Level Emphasis (HGLE)**

    .. math::
      HGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)i^2}}{N_z}

    Measures the distribution of the higher gray-level values, with a higher value indicating
    a greater concentration of high gray-level values in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']

    hgle = numpy.sum(pg * (ivector[None, :] ** 2), 1) / Nz
    return hgle


[docs]  def getSmallDependenceLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **11. Small Dependence Low Gray Level Emphasis (SDLGLE)**

    .. math::
      SDLGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)}{i^2j^2}}}{N_z}

    Measures the joint distribution of small dependence with lower gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    sdlgle = numpy.sum(self.P_gldm / ((ivector[None, :, None] ** 2) * (jvector[None, None, :] ** 2)), (1, 2)) / Nz
    return sdlgle


[docs]  def getSmallDependenceHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **12. Small Dependence High Gray Level Emphasis (SDHGLE)**

    .. math:
      SDHGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)i^2}{j^2}}}{N_z}

    Measures the joint distribution of small dependence with higher gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    sdhgle = numpy.sum(self.P_gldm * (ivector[None, :, None] ** 2) / (jvector[None, None, :] ** 2), (1, 2)) / Nz
    return sdhgle


[docs]  def getLargeDependenceLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **13. Large Dependence Low Gray Level Emphasis (LDLGLE)**

    .. math::
      LDLGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\frac{\textbf{P}(i,j)j^2}{i^2}}}{N_z}

    Measures the joint distribution of large dependence with lower gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    ldlgle = numpy.sum(self.P_gldm * (jvector[None, None, :] ** 2) / (ivector[None, :, None] ** 2), (1, 2)) / Nz
    return ldlgle


[docs]  def getLargeDependenceHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **14. Large Dependence High Gray Level Emphasis (LDHGLE)**

    .. math::
      LDHGLE = \frac{\sum^{N_g}_{i=1}\sum^{N_d}_{j=1}{\textbf{P}(i,j)i^2j^2}}{N_z}

    Measures the joint distribution of large dependence with higher gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    ldhgle = numpy.sum(self.P_gldm * ((jvector[None, None, :] ** 2) * (ivector[None, :, None] ** 2)), (1, 2)) / Nz
    return ldhgle
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  Source code for radiomics.glrlm

import numpy

from radiomics import base, cMatrices


[docs]class RadiomicsGLRLM(base.RadiomicsFeaturesBase):
  r"""
  A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number of
  pixels, of consecutive pixels that have the same gray level value. In a gray level run length matrix
  :math:`\textbf{P}(i,j|\theta)`, the :math:`(i,j)^{\text{th}}` element describes the number of runs with gray level
  :math:`i` and length :math:`j` occur in the image (ROI) along angle :math:`\theta`.

  As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

  .. math::
    \textbf{I} = \begin{bmatrix}
    5 & 2 & 5 & 4 & 4\\
    3 & 3 & 3 & 1 & 3\\
    2 & 1 & 1 & 1 & 3\\
    4 & 2 & 2 & 2 & 3\\
    3 & 5 & 3 & 3 & 2 \end{bmatrix}

  The GLRLM for :math:`\theta = 0`, where 0 degrees is the horizontal direction, then becomes:

  .. math::
    \textbf{P} = \begin{bmatrix}
    1 & 0 & 1 & 0 & 0\\
    3 & 0 & 1 & 0 & 0\\
    4 & 1 & 1 & 0 & 0\\
    1 & 1 & 0 & 0 & 0\\
    3 & 0 & 0 & 0 & 0 \end{bmatrix}

  Let:

  - :math:`N_g` be the number of discreet intensity values in the image
  - :math:`N_r` be the number of discreet run lengths in the image
  - :math:`N_p` be the number of voxels in the image
  - :math:`N_r(\theta)` be the number of runs in the image along angle :math:`\theta`, which is equal to
    :math:`\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}` and :math:`1 \leq N_r(\theta) \leq N_p`
  - :math:`\textbf{P}(i,j|\theta)` be the run length matrix for an arbitrary direction :math:`\theta`
  - :math:`p(i,j|\theta)` be the normalized run length matrix, defined as :math:`p(i,j|\theta) =
    \frac{\textbf{P}(i,j|\theta)}{N_r(\theta)}`

  By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean of these
  values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between neighbouring voxels
  and then summed and normalised. Features are then calculated on the resultant matrix. The distance between
  neighbouring voxels is calculated for each angle using the norm specified in 'weightingNorm'.

  The following class specific settings are possible:

  - weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
    Enumerated setting, possible values:

    - 'manhattan': first order norm
    - 'euclidean': second order norm
    - 'infinity': infinity norm.
    - 'no_weighting': GLCMs are weighted by factor 1 and summed
    - None: Applies no weighting, mean of values calculated on separate matrices is returned.

    In case of other values, an warning is logged and option 'no_weighting' is used.

  References

  - Galloway MM. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Processing,
    4(2):172-179.
  - Chu A., Sehgal C.M., Greenleaf J. F. 1990. Use of gray value distribution of run length for texture analysis.
    Pattern Recognition Letters, 11(6):415-419
  - Xu D., Kurani A., Furst J., Raicu D. 2004. Run-Length Encoding For Volumetric Texture. International Conference on
    Visualization, Imaging and Image Processing (VIIP), p. 452-458
  - Tang X. 1998. Texture information in run-length matrices. IEEE Transactions on Image Processing 7(11):1602-1609.
  - `Tustison N., Gee J. Run-Length Matrices For Texture Analysis. Insight Journal 2008 January - June.
    <http://www.insight-journal.org/browse/publication/231>`_
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsGLRLM, self).__init__(inputImage, inputMask, **kwargs)

    self.weightingNorm = kwargs.get('weightingNorm', None)  # manhattan, euclidean, infinity

    self.P_glrlm = None
    self.imageArray = self._applyBinning(self.imageArray)

  def _initCalculation(self, voxelCoordinates=None):
    self.P_glrlm = self._calculateMatrix(voxelCoordinates)

    self._calculateCoefficients()

    self.logger.debug('GLRLM feature class initialized, calculated GLRLM with shape %s', self.P_glrlm.shape)

  def _calculateMatrix(self, voxelCoordinates=None):
    self.logger.debug('Calculating GLRLM matrix in C')

    Ng = self.coefficients['Ng']
    Nr = numpy.max(self.imageArray.shape)

    matrix_args = [
      self.imageArray,
      self.maskArray,
      Ng,
      Nr,
      self.settings.get('force2D', False),
      self.settings.get('force2Ddimension', 0)
    ]
    if self.voxelBased:
      matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]

    P_glrlm, angles = cMatrices.calculate_glrlm(*matrix_args)  # shape (Nvox, Ng, Nr, Na)

    self.logger.debug('Process calculated matrix')

    # Delete rows that specify gray levels not present in the ROI
    NgVector = range(1, Ng + 1)  # All possible gray values
    GrayLevels = self.coefficients['grayLevels']  # Gray values present in ROI
    emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels)), dtype=int)  # Gray values NOT present in ROI

    P_glrlm = numpy.delete(P_glrlm, emptyGrayLevels - 1, 1)

    # Optionally apply a weighting factor
    if self.weightingNorm is not None:
      self.logger.debug('Applying weighting (%s)', self.weightingNorm)

      pixelSpacing = self.inputImage.GetSpacing()[::-1]
      weights = numpy.empty(len(angles))
      for a_idx, a in enumerate(angles):
        if self.weightingNorm == 'infinity':
          weights[a_idx] = max(numpy.abs(a) * pixelSpacing)
        elif self.weightingNorm == 'euclidean':
          weights[a_idx] = numpy.sqrt(numpy.sum((numpy.abs(a) * pixelSpacing) ** 2))
        elif self.weightingNorm == 'manhattan':
          weights[a_idx] = numpy.sum(numpy.abs(a) * pixelSpacing)
        elif self.weightingNorm == 'no_weighting':
          weights[a_idx] = 1
        else:
          self.logger.warning('weigthing norm "%s" is unknown, weighting factor is set to 1', self.weightingNorm)
          weights[a_idx] = 1

      P_glrlm = numpy.sum(P_glrlm * weights[None, None, None, :], 3, keepdims=True)

    Nr = numpy.sum(P_glrlm, (1, 2))

    # Delete empty angles if no weighting is applied
    if P_glrlm.shape[3] > 1:
      emptyAngles = numpy.where(numpy.sum(Nr, 0) == 0)
      if len(emptyAngles[0]) > 0:  # One or more angles are 'empty'
        self.logger.debug('Deleting %d empty angles:\n%s', len(emptyAngles[0]), angles[emptyAngles])
        P_glrlm = numpy.delete(P_glrlm, emptyAngles, 3)
        Nr = numpy.delete(Nr, emptyAngles, 1)
      else:
        self.logger.debug('No empty angles')

    Nr[Nr == 0] = numpy.nan  # set sum to numpy.spacing(1) if sum is 0?
    self.coefficients['Nr'] = Nr

    return P_glrlm

  def _calculateCoefficients(self):
    self.logger.debug('Calculating GLRLM coefficients')

    pr = numpy.sum(self.P_glrlm, 1)  # shape (Nvox, Nr, Na)
    pg = numpy.sum(self.P_glrlm, 2)  # shape (Nvox, Ng, Na)

    ivector = self.coefficients['grayLevels'].astype(float)  # shape (Ng,)
    jvector = numpy.arange(1, self.P_glrlm.shape[2] + 1, dtype=numpy.float64)  # shape (Nr,)

    # Delete columns that run lengths not present in the ROI
    emptyRunLenghts = numpy.where(numpy.sum(pr, (0, 2)) == 0)
    self.P_glrlm = numpy.delete(self.P_glrlm, emptyRunLenghts, 2)
    jvector = numpy.delete(jvector, emptyRunLenghts)
    pr = numpy.delete(pr, emptyRunLenghts, 1)

    self.coefficients['pr'] = pr
    self.coefficients['pg'] = pg
    self.coefficients['ivector'] = ivector
    self.coefficients['jvector'] = jvector

[docs]  def getShortRunEmphasisFeatureValue(self):
    r"""
    **1. Short Run Emphasis (SRE)**

    .. math::
      \textit{SRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{j^2}}}{N_r(\theta)}

    SRE is a measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths
    and more fine textural textures.
    """
    pr = self.coefficients['pr']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    sre = numpy.sum((pr / (jvector[None, :, None] ** 2)), 1) / Nr
    return numpy.nanmean(sre, 1)


[docs]  def getLongRunEmphasisFeatureValue(self):
    r"""
    **2. Long Run Emphasis (LRE)**

    .. math::
      \textit{LRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)j^2}}{N_r(\theta)}

    LRE is a measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and
    more coarse structural textures.
    """
    pr = self.coefficients['pr']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    lre = numpy.sum((pr * (jvector[None, :, None] ** 2)), 1) / Nr
    return numpy.nanmean(lre, 1)


[docs]  def getGrayLevelNonUniformityFeatureValue(self):
    r"""
    **3. Gray Level Non-Uniformity (GLN)**

    .. math::
      \textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}

    GLN measures the similarity of gray-level intensity values in the image, where a lower GLN value correlates with a
    greater similarity in intensity values.
    """
    pg = self.coefficients['pg']
    Nr = self.coefficients['Nr']

    gln = numpy.sum((pg ** 2), 1) / Nr
    return numpy.nanmean(gln, 1)


[docs]  def getGrayLevelNonUniformityNormalizedFeatureValue(self):
    r"""
    **4. Gray Level Non-Uniformity Normalized (GLNN)**

    .. math::
      \textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}

    GLNN measures the similarity of gray-level intensity values in the image, where a lower GLNN value correlates with a
    greater similarity in intensity values. This is the normalized version of the GLN formula.
    """
    pg = self.coefficients['pg']
    Nr = self.coefficients['Nr']

    glnn = numpy.sum(pg ** 2, 1) / (Nr ** 2)
    return numpy.nanmean(glnn, 1)


[docs]  def getRunLengthNonUniformityFeatureValue(self):
    r"""
    **5. Run Length Non-Uniformity (RLN)**

    .. math::
      \textit{RLN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)}

    RLN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
    among run lengths in the image.
    """
    pr = self.coefficients['pr']
    Nr = self.coefficients['Nr']

    rln = numpy.sum((pr ** 2), 1) / Nr
    return numpy.nanmean(rln, 1)


[docs]  def getRunLengthNonUniformityNormalizedFeatureValue(self):
    r"""
    **6. Run Length Non-Uniformity Normalized (RLNN)**

    .. math::
      \textit{RLNN} = \frac{\sum^{N_r}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j|\theta)}\right)^2}{N_r(\theta)^2}

    RLNN measures the similarity of run lengths throughout the image, with a lower value indicating more homogeneity
    among run lengths in the image. This is the normalized version of the RLN formula.
    """
    pr = self.coefficients['pr']
    Nr = self.coefficients['Nr']

    rlnn = numpy.sum((pr ** 2), 1) / Nr ** 2
    return numpy.nanmean(rlnn, 1)


[docs]  def getRunPercentageFeatureValue(self):
    r"""
    **7. Run Percentage (RP)**

    .. math::
      \textit{RP} = {\frac{N_r(\theta)}{N_p}}

    RP measures the coarseness of the texture by taking the ratio of number of runs and number of voxels in the ROI.

    Values are in range :math:`\frac{1}{N_p} \leq RP \leq 1`, with higher values indicating a larger portion of the ROI
    consists of short runs (indicates a more fine texture).

    .. note::
      Note that when weighting is applied and matrices are merged before calculation, :math:`N_p` is multiplied by
      :math:`n` number of matrices merged to ensure correct normalization (as each voxel is considered :math:`n` times)
    """
    pr = self.coefficients['pr']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    Np = numpy.sum(pr * jvector[None, :, None], 1)  # shape (Nvox, Na)

    rp = Nr / Np
    return numpy.nanmean(rp, 1)


[docs]  def getGrayLevelVarianceFeatureValue(self):
    r"""
    **8. Gray Level Variance (GLV)**

    .. math::
      \textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(i - \mu)^2}

    Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)i}`

    GLV measures the variance in gray level intensity for the runs.
    """
    ivector = self.coefficients['ivector']
    Nr = self.coefficients['Nr']
    pg = self.coefficients['pg'] / Nr[:, None, :]  # divide by Nr to get the normalized matrix

    u_i = numpy.sum(pg * ivector[None, :, None], 1, keepdims=True)
    glv = numpy.sum(pg * (ivector[None, :, None] - u_i) ** 2, 1)
    return numpy.nanmean(glv, 1)


[docs]  def getRunVarianceFeatureValue(self):
    r"""
    **9. Run Variance (RV)**

    .. math::
      \textit{RV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)(j - \mu)^2}

    Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}{p(i,j|\theta)j}`

    RV is a measure of the variance in runs for the run lengths.
    """
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']
    pr = self.coefficients['pr'] / Nr[:, None, :]   # divide by Nr to get the normalized matrix

    u_j = numpy.sum(pr * jvector[None, :, None], 1, keepdims=True)
    rv = numpy.sum(pr * (jvector[None, :, None] - u_j) ** 2, 1)
    return numpy.nanmean(rv, 1)


[docs]  def getRunEntropyFeatureValue(self):
    r"""
    **10. Run Entropy (RE)**

    .. math::
      \textit{RE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_r}_{j=1}
      {p(i,j|\theta)\log_{2}(p(i,j|\theta)+\epsilon)}

    Here, :math:`\epsilon` is an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`).

    RE measures the uncertainty/randomness in the distribution of run lengths and gray levels. A higher value indicates
    more heterogeneity in the texture patterns.
    """
    eps = numpy.spacing(1)
    Nr = self.coefficients['Nr']
    p_glrlm = self.P_glrlm / Nr[:, None, None, :]  # divide by Nr to get the normalized matrix

    re = -numpy.sum(p_glrlm * numpy.log2(p_glrlm + eps), (1, 2))
    return numpy.nanmean(re, 1)


[docs]  def getLowGrayLevelRunEmphasisFeatureValue(self):
    r"""
    **11. Low Gray Level Run Emphasis (LGLRE)**

    .. math::
      \textit{LGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{i^2}}}{N_r(\theta)}

    LGLRE measures the distribution of low gray-level values, with a higher value indicating a greater concentration of
    low gray-level values in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nr = self.coefficients['Nr']

    lglre = numpy.sum((pg / (ivector[None, :, None] ** 2)), 1) / Nr
    return numpy.nanmean(lglre, 1)


[docs]  def getHighGrayLevelRunEmphasisFeatureValue(self):
    r"""
    **12. High Gray Level Run Emphasis (HGLRE)**

    .. math::
      \textit{HGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)i^2}}{N_r(\theta)}

    HGLRE measures the distribution of the higher gray-level values, with a higher value indicating a greater
    concentration of high gray-level values in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nr = self.coefficients['Nr']

    hglre = numpy.sum((pg * (ivector[None, :, None] ** 2)), 1) / Nr
    return numpy.nanmean(hglre, 1)


[docs]  def getShortRunLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **13. Short Run Low Gray Level Emphasis (SRLGLE)**

    .. math::
      \textit{SRLGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)}{i^2j^2}}}{N_r(\theta)}

    SRLGLE measures the joint distribution of shorter run lengths with lower gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    srlgle = numpy.sum((self.P_glrlm / ((ivector[None, :, None, None] ** 2) * (jvector[None, None, :, None] ** 2))),
                       (1, 2)) / Nr
    return numpy.nanmean(srlgle, 1)


[docs]  def getShortRunHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **14. Short Run High Gray Level Emphasis (SRHGLE)**

    .. math::
      \textit{SRHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)i^2}{j^2}}}{N_r(\theta)}

    SRHGLE measures the joint distribution of shorter run lengths with higher gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    srhgle = numpy.sum((self.P_glrlm * (ivector[None, :, None, None] ** 2) / (jvector[None, None, :, None] ** 2)),
                       (1, 2)) / Nr
    return numpy.nanmean(srhgle, 1)


[docs]  def getLongRunLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **15. Long Run Low Gray Level Emphasis (LRLGLE)**

    .. math::
      \textit{LRLGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\frac{\textbf{P}(i,j|\theta)j^2}{i^2}}}{N_r(\theta)}

    LRLGLRE measures the joint distribution of long run lengths with lower gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    lrlgle = numpy.sum((self.P_glrlm * (jvector[None, None, :, None] ** 2) / (ivector[None, :, None, None] ** 2)),
                       (1, 2)) / Nr
    return numpy.nanmean(lrlgle, 1)


[docs]  def getLongRunHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **16. Long Run High Gray Level Emphasis (LRHGLE)**

    .. math::
      \textit{LRHGLRE} = \frac{\sum^{N_g}_{i=1}\sum^{N_r}_{j=1}{\textbf{P}(i,j|\theta)i^2j^2}}{N_r(\theta)}

    LRHGLRE measures the joint distribution of long run lengths with higher gray-level values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nr = self.coefficients['Nr']

    lrhgle = numpy.sum((self.P_glrlm * ((jvector[None, None, :, None] ** 2) * (ivector[None, :, None, None] ** 2))),
                       (1, 2)) / Nr
    return numpy.nanmean(lrhgle, 1)
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  Source code for radiomics.glszm

import numpy
from six.moves import range

from radiomics import base, cMatrices


[docs]class RadiomicsGLSZM(base.RadiomicsFeaturesBase):
  r"""
  A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as a the number
  of connected voxels that share the same gray level intensity. A voxel is considered connected if the distance is 1
  according to the infinity norm (26-connected region in a 3D, 8-connected region in 2D).
  In a gray level size zone matrix :math:`P(i,j)` the :math:`(i,j)^{\text{th}}` element equals the number of zones
  with gray level :math:`i` and size :math:`j` appear in image. Contrary to GLCM and GLRLM, the GLSZM is rotation
  independent, with only one matrix calculated for all directions in the ROI.

  As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

  .. math::
    \textbf{I} = \begin{bmatrix}
    5 & 2 & 5 & 4 & 4\\
    3 & 3 & 3 & 1 & 3\\
    2 & 1 & 1 & 1 & 3\\
    4 & 2 & 2 & 2 & 3\\
    3 & 5 & 3 & 3 & 2 \end{bmatrix}

  The GLSZM then becomes:

  .. math::
    \textbf{P} = \begin{bmatrix}
    0 & 0 & 0 & 1 & 0\\
    1 & 0 & 0 & 0 & 1\\
    1 & 0 & 1 & 0 & 1\\
    1 & 1 & 0 & 0 & 0\\
    3 & 0 & 0 & 0 & 0 \end{bmatrix}

  Let:

  - :math:`N_g` be the number of discreet intensity values in the image
  - :math:`N_s` be the number of discreet zone sizes in the image
  - :math:`N_p` be the number of voxels in the image
  - :math:`N_z` be the number of zones in the ROI, which is equal to :math:`\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}
    {\textbf{P}(i,j)}` and :math:`1 \leq N_z \leq N_p`
  - :math:`\textbf{P}(i,j)` be the size zone matrix
  - :math:`p(i,j)` be the normalized size zone matrix, defined as :math:`p(i,j) = \frac{\textbf{P}(i,j)}{N_z}`

  .. note::
    The mathematical formulas that define the GLSZM features correspond to the definitions of features extracted from
    the GLRLM.

  References

  - Guillaume Thibault; Bernard Fertil; Claire Navarro; Sandrine Pereira; Pierre Cau; Nicolas Levy; Jean Sequeira;
    Jean-Luc Mari (2009). "Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification".
    Pattern Recognition and Information Processing (PRIP): 140-145.
  - `<https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix>`_
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsGLSZM, self).__init__(inputImage, inputMask, **kwargs)

    self.P_glszm = None
    self.imageArray = self._applyBinning(self.imageArray)

  def _initCalculation(self, voxelCoordinates=None):
    self.P_glszm = self._calculateMatrix(voxelCoordinates)

    self._calculateCoefficients()

    self.logger.debug('GLSZM feature class initialized, calculated GLSZM with shape %s', self.P_glszm.shape)

  def _calculateMatrix(self, voxelCoordinates=None):
    """
    Number of times a region with a
    gray level and voxel count occurs in an image. P_glszm[level, voxel_count] = # occurrences

    For 3D-images this concerns a 26-connected region, for 2D an 8-connected region
    """
    self.logger.debug('Calculating GLSZM matrix in C')
    Ng = self.coefficients['Ng']
    Ns = numpy.sum(self.maskArray)

    matrix_args = [
      self.imageArray,
      self.maskArray,
      Ng,
      Ns,
      self.settings.get('force2D', False),
      self.settings.get('force2Ddimension', 0)
    ]
    if self.voxelBased:
      matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]

    P_glszm = cMatrices.calculate_glszm(*matrix_args)  # shape (Nvox, Ng, Ns)

    # Delete rows that specify gray levels not present in the ROI
    NgVector = range(1, Ng + 1)  # All possible gray values
    GrayLevels = self.coefficients['grayLevels']  # Gray values present in ROI
    emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels)), dtype=int)  # Gray values NOT present in ROI

    P_glszm = numpy.delete(P_glszm, emptyGrayLevels - 1, 1)

    return P_glszm

  def _calculateCoefficients(self):
    self.logger.debug('Calculating GLSZM coefficients')

    ps = numpy.sum(self.P_glszm, 1)  # shape (Nvox, Ns)
    pg = numpy.sum(self.P_glszm, 2)  # shape (Nvox, Ng)

    ivector = self.coefficients['grayLevels'].astype(float)  # shape (Ng,)
    jvector = numpy.arange(1, self.P_glszm.shape[2] + 1, dtype=numpy.float64)  # shape (Ns,)

    # Get the number of zones in this GLSZM
    Nz = numpy.sum(self.P_glszm, (1, 2))  # shape (Nvox,)
    Nz[Nz == 0] = 1  # set sum to numpy.spacing(1) if sum is 0?

    # Get the number of voxels represented by this GLSZM: Multiply the zones by their size and sum them
    Np = numpy.sum(ps * jvector[None, :], 1)  # shape (Nvox, )
    Np[Np == 0] = 1

    # Delete columns that specify zone sizes not present in the ROI
    emptyZoneSizes = numpy.where(numpy.sum(ps, 0) == 0)
    self.P_glszm = numpy.delete(self.P_glszm, emptyZoneSizes, 2)
    jvector = numpy.delete(jvector, emptyZoneSizes)
    ps = numpy.delete(ps, emptyZoneSizes, 1)

    self.coefficients['Np'] = Np
    self.coefficients['Nz'] = Nz
    self.coefficients['ps'] = ps
    self.coefficients['pg'] = pg
    self.coefficients['ivector'] = ivector
    self.coefficients['jvector'] = jvector

[docs]  def getSmallAreaEmphasisFeatureValue(self):
    r"""
    **1. Small Area Emphasis (SAE)**

    .. math::
      \textit{SAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{j^2}}}{N_z}

    SAE is a measure of the distribution of small size zones, with a greater value indicative of more smaller size zones
    and more fine textures.
    """
    ps = self.coefficients['ps']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    sae = numpy.sum(ps / (jvector[None, :] ** 2), 1) / Nz
    return sae


[docs]  def getLargeAreaEmphasisFeatureValue(self):
    r"""
    **2. Large Area Emphasis (LAE)**

    .. math::
      \textit{LAE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)j^2}}{N_z}

    LAE is a measure of the distribution of large area size zones, with a greater value indicative of more larger size
    zones and more coarse textures.
    """
    ps = self.coefficients['ps']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    lae = numpy.sum(ps * (jvector[None, :] ** 2), 1) / Nz
    return lae


[docs]  def getGrayLevelNonUniformityFeatureValue(self):
    r"""
    **3. Gray Level Non-Uniformity (GLN)**

    .. math::
      \textit{GLN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z}

    GLN measures the variability of gray-level intensity values in the image, with a lower value indicating more
    homogeneity in intensity values.
    """
    pg = self.coefficients['pg']
    Nz = self.coefficients['Nz']

    iv = numpy.sum(pg ** 2, 1) / Nz
    return iv


[docs]  def getGrayLevelNonUniformityNormalizedFeatureValue(self):
    r"""
    **4. Gray Level Non-Uniformity Normalized (GLNN)**

    .. math::
      \textit{GLNN} = \frac{\sum^{N_g}_{i=1}\left(\sum^{N_s}_{j=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}

    GLNN measures the variability of gray-level intensity values in the image, with a lower value indicating a greater
    similarity in intensity values. This is the normalized version of the GLN formula.
    """
    pg = self.coefficients['pg']
    Nz = self.coefficients['Nz']

    ivn = numpy.sum(pg ** 2, 1) / Nz ** 2
    return ivn


[docs]  def getSizeZoneNonUniformityFeatureValue(self):
    r"""
    **5. Size-Zone Non-Uniformity (SZN)**

    .. math::
      \textit{SZN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z}

    SZN measures the variability of size zone volumes in the image, with a lower value indicating more homogeneity in
    size zone volumes.
    """
    ps = self.coefficients['ps']
    Nz = self.coefficients['Nz']

    szv = numpy.sum(ps ** 2, 1) / Nz
    return szv


[docs]  def getSizeZoneNonUniformityNormalizedFeatureValue(self):
    r"""
    **6. Size-Zone Non-Uniformity Normalized (SZNN)**

    .. math::
      \textit{SZNN} = \frac{\sum^{N_s}_{j=1}\left(\sum^{N_g}_{i=1}{\textbf{P}(i,j)}\right)^2}{N_z^2}

    SZNN measures the variability of size zone volumes throughout the image, with a lower value indicating more
    homogeneity among zone size volumes in the image. This is the normalized version of the SZN formula.
    """
    ps = self.coefficients['ps']
    Nz = self.coefficients['Nz']

    szvn = numpy.sum(ps ** 2, 1) / Nz ** 2
    return szvn


[docs]  def getZonePercentageFeatureValue(self):
    r"""
    **7. Zone Percentage (ZP)**

    .. math::
      \textit{ZP} = \frac{N_z}{N_p}

    ZP measures the coarseness of the texture by taking the ratio of number of zones and number of voxels in the ROI.

    Values are in range :math:`\frac{1}{N_p} \leq ZP \leq 1`, with higher values indicating a larger portion of the ROI
    consists of small zones (indicates a more fine texture).
    """
    Nz = self.coefficients['Nz']
    Np = self.coefficients['Np']

    zp = Nz / Np
    return zp


[docs]  def getGrayLevelVarianceFeatureValue(self):
    r"""
    **8. Gray Level Variance (GLV)**

    .. math::
      \textit{GLV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(i - \mu)^2}

    Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)i}`

    GLV measures the variance in gray level intensities for the zones.
    """
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']
    pg = self.coefficients['pg'] / Nz[:, None]  # divide by Nz to get the normalized matrix

    u_i = numpy.sum(pg * ivector[None, :], 1, keepdims=True)
    glv = numpy.sum(pg * (ivector[None, :] - u_i) ** 2, 1)
    return glv


[docs]  def getZoneVarianceFeatureValue(self):
    r"""
    **9. Zone Variance (ZV)**

    .. math::
      \textit{ZV} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)(j - \mu)^2}

    Here, :math:`\mu = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)j}`

    ZV measures the variance in zone size volumes for the zones.
    """
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']
    ps = self.coefficients['ps'] / Nz[:, None]  # divide by Nz to get the normalized matrix

    u_j = numpy.sum(ps * jvector[None, :], 1, keepdims=True)
    zv = numpy.sum(ps * (jvector[None, :] - u_j) ** 2, 1)
    return zv


[docs]  def getZoneEntropyFeatureValue(self):
    r"""
    **10. Zone Entropy (ZE)**

    .. math::
      \textit{ZE} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_s}_{j=1}{p(i,j)\log_{2}(p(i,j)+\epsilon)}

    Here, :math:`\epsilon` is an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`).

    ZE measures the uncertainty/randomness in the distribution of zone sizes and gray levels. A higher value indicates
    more heterogeneneity in the texture patterns.
    """
    eps = numpy.spacing(1)
    Nz = self.coefficients['Nz']
    p_glszm = self.P_glszm / Nz[:, None, None]  # divide by Nz to get the normalized matrix

    ze = -numpy.sum(p_glszm * numpy.log2(p_glszm + eps), (1, 2))
    return ze


[docs]  def getLowGrayLevelZoneEmphasisFeatureValue(self):
    r"""
    **11. Low Gray Level Zone Emphasis (LGLZE)**

    .. math::
      \textit{LGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2}}}{N_z}

    LGLZE measures the distribution of lower gray-level size zones, with a higher value indicating a greater proportion
    of lower gray-level values and size zones in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']

    lie = numpy.sum(pg / (ivector[None, :] ** 2), 1) / Nz
    return lie


[docs]  def getHighGrayLevelZoneEmphasisFeatureValue(self):
    r"""
    **12. High Gray Level Zone Emphasis (HGLZE)**

    .. math::
      \textit{HGLZE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2}}{N_z}

    HGLZE measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion
    of higher gray-level values and size zones in the image.
    """
    pg = self.coefficients['pg']
    ivector = self.coefficients['ivector']
    Nz = self.coefficients['Nz']

    hie = numpy.sum(pg * (ivector[None, :] ** 2), 1) / Nz
    return hie


[docs]  def getSmallAreaLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **13. Small Area Low Gray Level Emphasis (SALGLE)**

    .. math::
      \textit{SALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)}{i^2j^2}}}{N_z}

    SALGLE measures the proportion in the image of the joint distribution of smaller size zones with lower gray-level
    values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    lisae = numpy.sum(self.P_glszm / ((ivector[None, :, None] ** 2) * (jvector[None, None, :] ** 2)), (1, 2)) / Nz
    return lisae


[docs]  def getSmallAreaHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **14. Small Area High Gray Level Emphasis (SAHGLE)**

    .. math::
      \textit{SAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)i^2}{j^2}}}{N_z}

    SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with higher gray-level
    values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    hisae = numpy.sum(self.P_glszm * (ivector[None, :, None] ** 2) / (jvector[None, None, :] ** 2), (1, 2)) / Nz
    return hisae


[docs]  def getLargeAreaLowGrayLevelEmphasisFeatureValue(self):
    r"""
    **15. Large Area Low Gray Level Emphasis (LALGLE)**

    .. math::
      \textit{LALGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\frac{\textbf{P}(i,j)j^2}{i^2}}}{N_z}

    LALGLE measures the proportion in the image of the joint distribution of larger size zones with lower gray-level
    values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    lilae = numpy.sum(self.P_glszm * (jvector[None, None, :] ** 2) / (ivector[None, :, None] ** 2), (1, 2)) / Nz
    return lilae


[docs]  def getLargeAreaHighGrayLevelEmphasisFeatureValue(self):
    r"""
    **16. Large Area High Gray Level Emphasis (LAHGLE)**

    .. math::
      \textit{LAHGLE} = \frac{\sum^{N_g}_{i=1}\sum^{N_s}_{j=1}{\textbf{P}(i,j)i^2j^2}}{N_z}

    LAHGLE measures the proportion in the image of the joint distribution of larger size zones with higher gray-level
    values.
    """
    ivector = self.coefficients['ivector']
    jvector = self.coefficients['jvector']
    Nz = self.coefficients['Nz']

    hilae = numpy.sum(self.P_glszm * (ivector[None, :, None] ** 2) * (jvector[None, None, :] ** 2), (1, 2)) / Nz
    return hilae
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  Source code for radiomics.imageoperations

from __future__ import print_function

import logging

import numpy
import pywt
import SimpleITK as sitk
import six
from six.moves import range

logger = logging.getLogger(__name__)


[docs]def getMask(mask, **kwargs):
  """
  Function to get the correct mask. Includes enforcing a correct pixel data type (UInt32).

  Also supports extracting the mask for a segmentation (stored as SimpleITK Vector image) if necessary.
  In this case, the mask at index ``label_channel`` is extracted. The resulting 3D volume is then treated as it were a
  scalar input volume (i.e. with the region of interest defined by voxels with value matching ``label``).

  Finally, checks if the mask volume contains an ROI identified by ``label``. Raises a value error if the label is not
  present (including a list of valid labels found).

  :param mask: SimpleITK Image object representing the mask. Can be a vector image to allow for overlapping masks.
  :param kwargs: keyword arguments. If argument ``label_channel`` is present, this is used to select the channel.
    Otherwise label_channel ``0`` is assumed.
  :return: SimpleITK.Image with pixel type UInt32 representing the mask volume
  """
  global logger
  label = kwargs.get('label', 1)
  label_channel = kwargs.get('label_channel', 0)
  if 'vector' in mask.GetPixelIDTypeAsString().lower():
    logger.debug('Mask appears to be a segmentation object (=stored as vector image).')
    n_components = mask.GetNumberOfComponentsPerPixel()
    assert label_channel < n_components, \
        "Mask %i requested, but segmentation object only contains %i objects" % (label_channel, n_components)

    logger.info('Extracting mask at index %i', label_channel)
    selector = sitk.VectorIndexSelectionCastImageFilter()
    selector.SetIndex(label_channel)
    mask = selector.Execute(mask)

  logger.debug('Force casting mask to UInt32 to ensure correct datatype.')
  mask = sitk.Cast(mask, sitk.sitkUInt32)

  labels = numpy.unique(sitk.GetArrayFromImage(mask))
  if len(labels) == 1 and labels[0] == 0:
    raise ValueError('No labels found in this mask (i.e. nothing is segmented)!')
  if label not in labels:
    raise ValueError('Label (%g) not present in mask. Choose from %s' % (label, labels[labels != 0]))

  return mask



[docs]def getBinEdges(parameterValues, **kwargs):
  r"""
  Calculate and return the histogram using parameterValues (1D array of all segmented voxels in the image).

  **Fixed bin width:**

  Returns the bin edges, a list of the edges of the calculated bins, length is N(bins) + 1. Bins are defined such, that
  the bin edges are equally spaced from zero, and that the leftmost edge :math:`\leq \min(X_{gl})`. These bin edges
  represent the half-open ranges of each bin :math:`[\text{lower_edge}, \text{upper_edge})` and result in gray value
  discretization as follows:

  .. math::
    X_{b, i} = \lfloor \frac{X_{gl, i}}{W} \rfloor - \lfloor \frac {\min(X_{gl})}{W} \rfloor + 1

  Here, :math:`X_{gl, i}` and :math:`X_{b, i}` are gray level intensities before and after discretization, respectively.
  :math:`{W}` is the bin width value (specfied in ``binWidth`` parameter). The first part of the formula ensures that
  the bins are equally spaced from 0, whereas the second part ensures that the minimum gray level intensity inside the
  ROI after binning is always 1.

  In the case where the maximum gray level intensity is equally dividable by the binWidth, i.e.
  :math:`\max(X_{gl}) \mod W = 0`, this will result in that maximum gray level being assigned to bin
  :math:`[\max(X_{gl}), \max(X_{gl}) + W)`, which is consistent with numpy.digitize, but different from the behaviour
  of numpy.histogram, where the final bin has a closed range, including the maximum gray level, i.e.
  :math:`[\max(X_{gl}) - W, \max(X_{gl})]`.

  .. note::
    This method is slightly different from the fixed bin size discretization method described by IBSI. The two most
    notable differences are 1) that PyRadiomics uses a floor division (and adds 1), as opposed to a ceiling division and
    2) that in PyRadiomics, bins are always equally spaced from 0, as opposed to equally spaced from the minimum
    gray level intensity.

  *Example: for a ROI with values ranging from 54 to 166, and a bin width of 25, the bin edges will be [50, 75, 100,
  125, 150, 175].*

  This value can be directly passed to ``numpy.histogram`` to generate a histogram or ``numpy.digitize`` to discretize
  the ROI gray values. See also :py:func:`binImage()`.

  **Fixed bin Count:**

  .. math::
    X_{b, i} = \left\{ {\begin{array}{lcl}
    \lfloor N_b\frac{(X_{gl, i} - \min(X_{gl})}{\max(X_{gl}) - \min(X_{gl})} \rfloor + 1 &
    \mbox{for} & X_{gl, i} < \max(X_{gl}) \\
    N_b & \mbox{for} & X_{gl, i} = \max(X_{gl}) \end{array}} \right.

  Here, :math:`N_b` is the number of bins to use, as defined in ``binCount``.

  References

  - Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics:
    the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(August):11075.
  """
  global logger
  binWidth = kwargs.get('binWidth', 25)
  binCount = kwargs.get('binCount')

  if binCount is not None:
    binEdges = numpy.histogram(parameterValues, binCount)[1]
    binEdges[-1] += 1  # Ensures that the maximum value is included in the topmost bin when using numpy.digitize
  else:
    minimum = min(parameterValues)
    maximum = max(parameterValues)

    # Start binning form the first value lesser than or equal to the minimum value and evenly dividable by binwidth
    lowBound = minimum - (minimum % binWidth)
    # Add + 2* binwidth to ensure the maximum value is included in the range generated by numpy.arange, and that values
    # equal to highbound are binned into a separate bin by numpy.histogram (This ensures ALL bins are half open, as
    # numpy.histogram treats the last bin as a closed interval. Moreover, this ensures consistency with numpy.digitize,
    # which will assign len(bins) + 1 to values equal to rightmost bin edge, treating all bins as half-open)
    highBound = maximum + 2 * binWidth

    binEdges = numpy.arange(lowBound, highBound, binWidth)

    # if min(parameterValues) % binWidth = 0 and min(parameterValues) = max(parameterValues), binEdges will only contain
    # 1 value. If this is the case (flat region) ensure that numpy.histogram creates 1 bin (requires 2 edges). For
    # numpy.histogram, a binCount (1) would also suffice, however, this is not accepted by numpy.digitize, which also uses
    # binEdges calculated by this function.
    if len(binEdges) == 1:  # Flat region, ensure that there is 1 bin
      binEdges = [binEdges[0] - .5, binEdges[0] + .5]  # Simulates binEdges returned by numpy.histogram if bins = 1

    logger.debug('Calculated %d bins for bin width %g with edges: %s)', len(binEdges) - 1, binWidth, binEdges)

  return binEdges  # numpy.histogram(parameterValues, bins=binedges)



[docs]def binImage(parameterMatrix, parameterMatrixCoordinates=None, **kwargs):
  r"""
  Discretizes the parameterMatrix (matrix representation of the gray levels in the ROI) using the binEdges calculated
  using :py:func:`getBinEdges`. Only voxels defined by parameterMatrixCoordinates (defining the segmentation) are used
  for calculation of histogram and subsequently discretized. Voxels outside segmentation are left unchanged.
  """
  global logger
  logger.debug('Discretizing gray levels inside ROI')

  discretizedParameterMatrix = numpy.zeros(parameterMatrix.shape, dtype='int')
  if parameterMatrixCoordinates is None:
    binEdges = getBinEdges(parameterMatrix.flatten(), **kwargs)
    discretizedParameterMatrix = numpy.digitize(parameterMatrix, binEdges)
  else:
    binEdges = getBinEdges(parameterMatrix[parameterMatrixCoordinates], **kwargs)
    discretizedParameterMatrix[parameterMatrixCoordinates] = numpy.digitize(parameterMatrix[parameterMatrixCoordinates], binEdges)

  return discretizedParameterMatrix, binEdges



[docs]def checkMask(imageNode, maskNode, **kwargs):
  """
  Checks whether the Region of Interest (ROI) defined in the mask size and dimensions match constraints, specified in
  settings. The following checks are performed.

  1. Check whether the mask corresponds to the image (i.e. has a similar size, spacing, direction and origin). **N.B.
     This check is performed by SimpleITK, if it fails, an error is logged, with additional error information from
     SimpleITK logged with level DEBUG (i.e. logging-level has to be set to debug to store this information in the log
     file).** The tolerance can be increased using the ``geometryTolerance`` parameter. Alternatively, if the
     ``correctMask`` parameter is ``True``, PyRadiomics will check if the mask contains a valid ROI (inside image
     physical area) and if so, resample the mask to image geometry. See :ref:`radiomics-settings-label` for more info.

  2. Check if the label is present in the mask
  3. Count the number of dimensions in which the size of the ROI > 1 (i.e. does the ROI represent a single voxel (0), a
     line (1), a surface (2) or a volume (3)) and compare this to the minimum number of dimension required (specified in
     ``minimumROIDimensions``).
  4. Optional. Check if there are at least N voxels in the ROI. N is defined in ``minimumROISize``, this test is skipped
     if ``minimumROISize = None``.

  This function returns a tuple of two items. The first item is the bounding box of the mask. The second item is the
  mask that has been corrected by resampling to the input image geometry (if that resampling was successful).

  If a check fails, a ValueError is raised. No features will be extracted for this mask.
  If the mask passes all tests, this function returns the bounding box, which is used in the :py:func:`cropToTumorMask`
  function.

  The bounding box is calculated during (1.) and used for the subsequent checks. The bounding box is
  calculated by SimpleITK.LabelStatisticsImageFilter() and returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z,
  U_z), where 'L' and 'U' are lower and upper bound, respectively, and 'x', 'y' and 'z' the three image dimensions.

  By reusing the bounding box calculated here, calls to SimpleITK.LabelStatisticsImageFilter() are reduced, improving
  performance.

  Uses the following settings:

  - minimumROIDimensions [1]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, respectively).
    Single-voxel segmentations are always excluded.
  - minimumROISize [None]: Integer, > 0,  specifies the minimum number of voxels required. Test is skipped if
    this parameter is set to None.

  .. note::

    If the first check fails there are generally 2 possible causes:

     1. The image and mask are matched, but there is a slight difference in origin, direction or spacing. The exact
        cause, difference and used tolerance are stored with level DEBUG in a log (if enabled). For more information on
        setting up logging, see ":ref:`setting up logging <radiomics-logging-label>`" and the helloRadiomics examples
        (located in the ``pyradiomics/examples`` folder). This problem can be fixed by changing the global tolerance
        (``geometryTolerance`` parameter) or enabling mask correction (``correctMask`` parameter).
     2. The image and mask do not match, but the ROI contained within the mask does represent a physical volume
        contained within the image. If this is the case, resampling is needed to ensure matching geometry between image
        and mask before features can be extracted. This can be achieved by enabling mask correction using the
        ``correctMask`` parameter.
  """
  global logger

  correctedMask = None

  label = kwargs.get('label', 1)
  minDims = kwargs.get('minimumROIDimensions', 2)
  minSize = kwargs.get('minimumROISize', None)

  logger.debug('Checking mask with label %d', label)
  logger.debug('Calculating bounding box')
  # Determine bounds
  lsif = sitk.LabelStatisticsImageFilter()
  try:
    lsif.Execute(imageNode, maskNode)

    # If lsif fails, and mask is corrected, it includes a check whether the label is present. Therefore, perform
    # this test here only if lsif does not fail on the first attempt.
    if label not in lsif.GetLabels():
      raise ValueError('Label (%g) not present in mask' % label)
  except RuntimeError as e:
    # If correctMask = True, try to resample the mask to the image geometry, otherwise return None ("fail")
    if not kwargs.get('correctMask', False):
      if "Both images for LabelStatisticsImageFilter don't match type or dimension!" in e.args[0]:
        logger.debug('Additional information on error.', exc_info=True)
        raise ValueError('Image/Mask datatype or size mismatch. Potential fix: enable correctMask, see '
                         'Documentation:Usage:Customizing the Extraction:Settings:correctMask for more information')
      elif "Inputs do not occupy the same physical space!" in e.args[0]:
        logger.debug('Additional information on error.', exc_info=True)
        raise ValueError('Image/Mask geometry mismatch. Potential fix: increase tolerance using geometryTolerance, '
                         'see Documentation:Usage:Customizing the Extraction:Settings:geometryTolerance for more '
                         'information')
      else:
        raise e  # unhandled error

    logger.warning('Image/Mask geometry mismatch, attempting to correct Mask')

    correctedMask = _correctMask(imageNode, maskNode, **kwargs)  # Raises Value error if ROI outside image physical space

    # Resampling successful, try to calculate boundingbox
    try:
      lsif.Execute(imageNode, correctedMask)
    except RuntimeError:
      logger.debug('Bounding box calculation with resampled mask failed', exc_info=True)
      raise ValueError('Calculation of bounding box failed, for more information run with DEBUG logging and check log')

  # LBound and UBound of the bounding box, as (L_X, U_X, L_Y, U_Y, L_Z, U_Z)
  boundingBox = numpy.array(lsif.GetBoundingBox(label))

  logger.debug('Checking minimum number of dimensions requirements (%d)', minDims)
  ndims = numpy.sum((boundingBox[1::2] - boundingBox[0::2] + 1) > 1)  # UBound - LBound + 1 = Size
  if ndims == 0:
    raise ValueError('mask only contains 1 segmented voxel! Cannot extract features for a single voxel.')
  elif ndims < minDims:
    raise ValueError('mask has too few dimensions (number of dimensions %d, minimum required %d)' % (ndims, minDims))

  if minSize is not None:
    logger.debug('Checking minimum size requirements (minimum size: %d)', minSize)
    roiSize = lsif.GetCount(label)
    if roiSize <= minSize:
      raise ValueError('Size of the ROI is too small (minimum size: %g, ROI size: %g' % (minSize, roiSize))

  return boundingBox, correctedMask



def _correctMask(imageNode, maskNode, **kwargs):
  """
  If the mask geometry does not match the image geometry, this function can be used to resample the mask to the image
  physical space.

  First, the mask is checked for a valid ROI (i.e. maskNode contains an ROI with the given label value, which does not
  include areas outside of the physical image bounds).

  If the ROI is valid, the maskNode is resampled using the imageNode as a reference image and a nearest neighbor
  interpolation.

  If the ROI is valid, the resampled mask is returned, otherwise ``None`` is returned.
  """
  global logger
  logger.debug('Resampling mask to image geometry')

  _checkROI(imageNode, maskNode, **kwargs)  # Raises a value error if ROI is invalid

  rif = sitk.ResampleImageFilter()
  rif.SetReferenceImage(imageNode)
  rif.SetInterpolator(sitk.sitkNearestNeighbor)

  logger.debug('Resampling...')

  return rif.Execute(maskNode)


def _checkROI(imageNode, maskNode, **kwargs):
  """
  Check whether maskNode contains a valid ROI defined by label:

  1. Check whether the label value is present in the maskNode.
  2. Check whether the ROI defined by the label does not include an area outside the physical area of the image.

  For the second check, a tolerance of 1e-3 is allowed.

  If the ROI is valid, the bounding box (lower bounds, followd by size in all dimensions (X, Y, Z ordered)) is
  returned. Otherwise, a ValueError is raised.
  """
  global logger
  label = kwargs.get('label', 1)

  logger.debug('Checking ROI validity')

  # Determine bounds of cropped volume in terms of original Index coordinate space
  lssif = sitk.LabelShapeStatisticsImageFilter()
  lssif.Execute(maskNode)

  logger.debug('Checking if label %d is persent in the mask', label)
  if label not in lssif.GetLabels():
    raise ValueError('Label (%d) not present in mask', label)

  # LBound and size of the bounding box, as (L_X, L_Y, [L_Z], S_X, S_Y, [S_Z])
  bb = numpy.array(lssif.GetBoundingBox(label))
  Nd = maskNode.GetDimension()

  # Determine if the ROI is within the physical space of the image

  logger.debug('Comparing physical space of bounding box to physical space of image')
  # Step 1: Get the origin and UBound corners of the bounding box in physical space
  # The additional 0.5 represents the difference between the voxel center and the voxel corner
  # Upper bound index of ROI = bb[:Nd] + bb[Nd:] - 1 (LBound + Size - 1), .5 is added to get corner
  ROIBounds = (maskNode.TransformContinuousIndexToPhysicalPoint(bb[:Nd] - .5),  # Origin
               maskNode.TransformContinuousIndexToPhysicalPoint(bb[:Nd] + bb[Nd:] - 0.5))  # UBound
  # Step 2: Translate the ROI physical bounds to the image coordinate space
  ROIBounds = (imageNode.TransformPhysicalPointToContinuousIndex(ROIBounds[0]),  # Origin
               imageNode.TransformPhysicalPointToContinuousIndex(ROIBounds[1]))

  logger.debug('ROI bounds (image coordinate space): %s', ROIBounds)

  # Check if any of the ROI bounds are outside the image indices (i.e. -0.5 < ROI < Im.Size -0.5)
  # The additional 0.5 is to allow for different spacings (defines the edges, not the centers of the edge-voxels
  tolerance = 1e-3  # Define a tolerance to correct for machine precision errors
  if numpy.any(numpy.min(ROIBounds, axis=0) < (- .5 - tolerance)) or \
     numpy.any(numpy.max(ROIBounds, axis=0) > (numpy.array(imageNode.GetSize()) - .5 + tolerance)):
    raise ValueError('Bounding box of ROI is larger than image space:\n\t'
                     'ROI bounds (x, y, z image coordinate space) %s\n\tImage Size %s' %
                     (ROIBounds, imageNode.GetSize()))

  logger.debug('ROI valid, calculating resampling grid')

  return bb


[docs]def cropToTumorMask(imageNode, maskNode, boundingBox, **kwargs):
  """
  Create a sitkImage of the segmented region of the image based on the input label.

  Create a sitkImage of the labelled region of the image, cropped to have a
  cuboid shape equal to the ijk boundaries of the label.

  :param boundingBox: The bounding box used to crop the image. This is the bounding box as returned by
    :py:func:`checkMask`.
  :param label: [1], value of the label, onto which the image and mask must be cropped.
  :return: Cropped image and mask (SimpleITK image instances).

  """
  global logger
  padDistance = kwargs.get('padDistance', 0)

  size = numpy.array(maskNode.GetSize())

  ijkMinBounds = boundingBox[0::2] - padDistance
  ijkMaxBounds = size - boundingBox[1::2] - padDistance - 1

  # Ensure cropped area is not outside original image bounds
  ijkMinBounds = numpy.maximum(ijkMinBounds, 0)
  ijkMaxBounds = numpy.maximum(ijkMaxBounds, 0)

  # Crop Image
  logger.debug('Cropping to size %s', (boundingBox[1::2] - boundingBox[0::2]) + 1)
  cif = sitk.CropImageFilter()
  try:
    cif.SetLowerBoundaryCropSize(ijkMinBounds)
    cif.SetUpperBoundaryCropSize(ijkMaxBounds)
  except TypeError:
    # newer versions of SITK/python want a tuple or list
    cif.SetLowerBoundaryCropSize(ijkMinBounds.tolist())
    cif.SetUpperBoundaryCropSize(ijkMaxBounds.tolist())
  croppedImageNode = cif.Execute(imageNode)
  croppedMaskNode = cif.Execute(maskNode)

  return croppedImageNode, croppedMaskNode



[docs]def resampleImage(imageNode, maskNode, **kwargs):
  """
  Resamples image and mask to the specified pixel spacing (The default interpolator is Bspline).

  Resampling can be enabled using the settings 'interpolator' and 'resampledPixelSpacing' in the parameter file or as
  part of the settings passed to the feature extractor. See also
  :ref:`feature extractor <radiomics-featureextractor-label>`.

  'imageNode' and 'maskNode' are SimpleITK Objects, and 'resampledPixelSpacing' is the output pixel spacing (sequence of
  3 elements).

  If only in-plane resampling is required, set the output pixel spacing for the out-of-plane dimension (usually the last
  dimension) to 0. Spacings with a value of 0 are replaced by the spacing as it is in the original mask.

  Only part of the image and labelmap are resampled. The resampling grid is aligned to the input origin, but only voxels
  covering the area of the image ROI (defined by the bounding box) and the padDistance are resampled. This results in a
  resampled and partially cropped image and mask. Additional padding is required as some filters also sample voxels
  outside of segmentation boundaries. For feature calculation, image and mask are cropped to the bounding box without
  any additional padding, as the feature classes do not need the gray level values outside the segmentation.

  The resampling grid is calculated using only the input mask. Even when image and mask have different directions, both
  the cropped image and mask will have the same direction (equal to direction of the mask). Spacing and size are
  determined by settings and bounding box of the ROI.

  .. note::
    Before resampling the bounds of the non-padded ROI are compared to the bounds. If the ROI bounding box includes
    areas outside of the physical space of the image, an error is logged and (None, None) is returned. No features will
    be extracted. This enables the input image and mask to have different geometry, so long as the ROI defines an area
    within the image.

  .. note::
    The additional padding is adjusted, so that only the physical space within the mask is resampled. This is done to
    prevent resampling outside of the image. Please note that this assumes the image and mask to image the same physical
    space. If this is not the case, it is possible that voxels outside the image are included in the resampling grid,
    these will be assigned a value of 0. It is therefore recommended, but not enforced, to use an input mask which has
    the same or a smaller physical space than the image.
  """
  global logger
  resampledPixelSpacing = kwargs['resampledPixelSpacing']
  interpolator = kwargs.get('interpolator', sitk.sitkBSpline)
  padDistance = kwargs.get('padDistance', 5)
  label = kwargs.get('label', 1)

  logger.debug('Resampling image and mask')

  if imageNode is None or maskNode is None:
    raise ValueError('Requires both image and mask to resample')

  maskSpacing = numpy.array(maskNode.GetSpacing())
  imageSpacing = numpy.array(imageNode.GetSpacing())

  Nd_resampled = len(resampledPixelSpacing)
  Nd_mask = len(maskSpacing)
  assert Nd_resampled == Nd_mask, \
      'Wrong dimensionality (%i-D) of resampledPixelSpacing!, %i-D required' % (Nd_resampled, Nd_mask)

  # If spacing for a direction is set to 0, use the original spacing (enables "only in-slice" resampling)
  logger.debug('Where resampled spacing is set to 0, set it to the original spacing (mask)')
  resampledPixelSpacing = numpy.array(resampledPixelSpacing)
  resampledPixelSpacing = numpy.where(resampledPixelSpacing == 0, maskSpacing, resampledPixelSpacing)

  # Check if the maskNode contains a valid ROI. If ROI is valid, the bounding box needed to calculate the resampling
  # grid is returned.
  bb = _checkROI(imageNode, maskNode, **kwargs)

  # Do not resample in those directions where labelmap spans only one slice.
  maskSize = numpy.array(maskNode.GetSize())
  resampledPixelSpacing = numpy.where(bb[Nd_mask:] != 1, resampledPixelSpacing, maskSpacing)

  # If current spacing is equal to resampledPixelSpacing, no interpolation is needed
  # Tolerance = 1e-5 + 1e-8*abs(resampledSpacing)
  logger.debug('Comparing resampled spacing to original spacing (image')
  if numpy.allclose(imageSpacing, resampledPixelSpacing):
    logger.info('New spacing equal to original image spacing, just resampling the mask')

    # Ensure that image and mask geometry match
    rif = sitk.ResampleImageFilter()
    rif.SetReferenceImage(imageNode)
    rif.SetInterpolator(sitk.sitkNearestNeighbor)
    maskNode = rif.Execute(maskNode)

    # re-calculate the bounding box of the mask
    lssif = sitk.LabelShapeStatisticsImageFilter()
    lssif.Execute(maskNode)
    bb = numpy.array(lssif.GetBoundingBox(label))

    low_up_bb = numpy.empty(Nd_mask * 2, dtype=int)
    low_up_bb[::2] = bb[:Nd_mask]
    low_up_bb[1::2] = bb[:Nd_mask] + bb[Nd_mask:] - 1
    return cropToTumorMask(imageNode, maskNode, low_up_bb, **kwargs)

  spacingRatio = maskSpacing / resampledPixelSpacing

  # Determine bounds of cropped volume in terms of new Index coordinate space,
  # round down for lowerbound and up for upperbound to ensure entire segmentation is captured (prevent data loss)
  # Pad with an extra .5 to prevent data loss in case of upsampling. For Ubound this is (-1 + 0.5 = -0.5)
  bbNewLBound = numpy.floor((bb[:Nd_mask] - 0.5) * spacingRatio - padDistance)
  bbNewUBound = numpy.ceil((bb[:Nd_mask] + bb[Nd_mask:] - 0.5) * spacingRatio + padDistance)

  # Ensure resampling is not performed outside bounds of original image
  maxUbound = numpy.ceil(maskSize * spacingRatio) - 1
  bbNewLBound = numpy.where(bbNewLBound < 0, 0, bbNewLBound)
  bbNewUBound = numpy.where(bbNewUBound > maxUbound, maxUbound, bbNewUBound)

  # Calculate the new size. Cast to int to prevent error in sitk.
  newSize = numpy.array(bbNewUBound - bbNewLBound + 1, dtype='int').tolist()

  # Determine continuous index of bbNewLBound in terms of the original Index coordinate space
  bbOriginalLBound = bbNewLBound / spacingRatio

  # Origin is located in center of first voxel, e.g. 1/2 of the spacing
  # from Corner, which corresponds to 0 in the original Index coordinate space.
  # The new spacing will be in 0 the new Index coordinate space. Here we use continuous
  # index to calculate where the new 0 of the new Index coordinate space (of the original volume
  # in terms of the original spacing, and add the minimum bounds of the cropped area to
  # get the new Index coordinate space of the cropped volume in terms of the original Index coordinate space.
  # Then use the ITK functionality to bring the continuous index into the physical space (mm)
  newOriginIndex = numpy.array(.5 * (resampledPixelSpacing - maskSpacing) / maskSpacing)
  newCroppedOriginIndex = newOriginIndex + bbOriginalLBound
  newOrigin = maskNode.TransformContinuousIndexToPhysicalPoint(newCroppedOriginIndex)

  imagePixelType = imageNode.GetPixelID()
  maskPixelType = maskNode.GetPixelID()

  direction = numpy.array(maskNode.GetDirection())

  logger.info('Applying resampling from spacing %s and size %s to spacing %s and size %s',
              maskSpacing, maskSize, resampledPixelSpacing, newSize)

  try:
    if isinstance(interpolator, six.string_types):
      interpolator = getattr(sitk, interpolator)
  except Exception:
    logger.warning('interpolator "%s" not recognized, using sitkBSpline', interpolator)
    interpolator = sitk.sitkBSpline

  rif = sitk.ResampleImageFilter()

  rif.SetOutputSpacing(resampledPixelSpacing)
  rif.SetOutputDirection(direction)
  rif.SetSize(newSize)
  rif.SetOutputOrigin(newOrigin)

  logger.debug('Resampling image')
  rif.SetOutputPixelType(imagePixelType)
  rif.SetInterpolator(interpolator)
  resampledImageNode = rif.Execute(imageNode)

  logger.debug('Resampling mask')
  rif.SetOutputPixelType(maskPixelType)
  rif.SetInterpolator(sitk.sitkNearestNeighbor)
  resampledMaskNode = rif.Execute(maskNode)

  return resampledImageNode, resampledMaskNode



[docs]def normalizeImage(image, **kwargs):
  r"""
  Normalizes the image by centering it at the mean with standard deviation. Normalization is based on all gray values in
  the image, not just those inside the segmentation.

  :math:`f(x) = \frac{s(x - \mu_x)}{\sigma_x}`

  Where:

  - :math:`x` and :math:`f(x)` are the original and normalized intensity, respectively.
  - :math:`\mu_x` and :math:`\sigma_x` are the mean and standard deviation of the image instensity values.
  - :math:`s` is an optional scaling defined by ``scale``. By default, it is set to 1.

  Optionally, outliers can be removed, in which case values for which :math:`x > \mu_x + n\sigma_x` or
  :math:`x < \mu_x - n\sigma_x` are set to :math:`\mu_x + n\sigma_x` and :math:`\mu_x - n\sigma_x`, respectively.
  Here, :math:`n>0` and defined by ``outliers``. This, in turn, is controlled by the ``removeOutliers`` parameter.
  Removal of outliers is done after the values of the image are normalized, but before ``scale`` is applied.
  """
  global logger
  scale = kwargs.get('normalizeScale', 1)
  outliers = kwargs.get('removeOutliers')

  logger.debug('Normalizing image with scale %d', scale)
  image = sitk.Normalize(image)

  if outliers is not None:
    logger.debug('Removing outliers > %g standard deviations', outliers)
    imageArr = sitk.GetArrayFromImage(image)

    imageArr[imageArr > outliers] = outliers
    imageArr[imageArr < -outliers] = -outliers

    newImage = sitk.GetImageFromArray(imageArr)
    newImage.CopyInformation(image)
    image = newImage

  image *= scale

  return image



[docs]def resegmentMask(imageNode, maskNode, **kwargs):
  r"""
  Resegment the Mask based on the range specified by the threshold(s) in ``resegmentRange``. Either 1 or 2 thresholds
  can be defined. In case of 1 threshold, all values equal to or higher than that threshold are included. If there are
  2 thresholds, all voxels with a value inside the closed-range defined by these thresholds is included
  (i.e. a voxels is included if :math:`T_{lower} \leq X_gl \leq T_{upper}`).
  The resegmented mask is therefore always equal or smaller in size than the original mask.
  In the case where either resegmentRange or resegmentMode contains illigal values, a ValueError is raised.

  There are 3 modes for defining the threshold:

  1. absolute (default): The values in resegmentRange define  as absolute values (i.e. corresponding to the gray values
     in the image
  2. relative: The values in resegmentRange define the threshold as relative to the maximum value found in the ROI.
     (e.g. 0.5 indicates a threshold at 50% of maximum gray value)
  3. sigma: The threshold is defined as the number of sigma from the mean. (e.g. resegmentRange [-3, 3] will include
     all voxels that have a value that differs 3 or less standard deviations from the mean).

  """
  global logger
  resegmentRange = kwargs['resegmentRange']
  resegmentMode = kwargs.get('resegmentMode', 'absolute')
  label = kwargs.get('label', 1)

  if resegmentRange is None:
    raise ValueError('resegmentRange is None.')
  if len(resegmentRange) == 0 or len(resegmentRange) > 2:
    raise ValueError('Length %i is not allowed for resegmentRange' % len(resegmentRange))

  logger.debug('Resegmenting mask (range %s, mode %s)', resegmentRange, resegmentMode)

  im_arr = sitk.GetArrayFromImage(imageNode)
  ma_arr = (sitk.GetArrayFromImage(maskNode) == label)  # boolean array

  oldSize = numpy.sum(ma_arr)

  if resegmentMode == 'absolute':
    logger.debug('Resegmenting in absolute mode')
    thresholds = sorted(resegmentRange)
  elif resegmentMode == 'relative':
    max_gl = numpy.max(im_arr[ma_arr])
    logger.debug('Resegmenting in relative mode, max %g', max_gl)
    thresholds = [max_gl * th for th in sorted(resegmentRange)]
  elif resegmentMode == 'sigma':
    mean_gl = numpy.mean(im_arr[ma_arr])
    sd_gl = numpy.std(im_arr[ma_arr])
    logger.debug('Resegmenting in sigma mode, mean %g, std %g', mean_gl, sd_gl)
    thresholds = [mean_gl + sd_gl * th for th in sorted(resegmentRange)]
  else:
    raise ValueError('Resegment mode %s not recognized.' % resegmentMode)

  # Apply lower threshold
  logger.debug('Applying lower threshold (%g)', thresholds[0])
  ma_arr[ma_arr] = im_arr[ma_arr] >= thresholds[0]

  # If 2 thresholds are defined, also apply an upper threshold
  if len(thresholds) == 2:
    logger.debug('Applying upper threshold (%g)', thresholds[1])
    ma_arr[ma_arr] = im_arr[ma_arr] <= thresholds[1]

  roiSize = numpy.sum(ma_arr)

  if roiSize <= 1:
    raise ValueError("Resegmentation excluded too many voxels with label %i (retained %i voxel(s))! "
                     "Cannot extract features" % (label, roiSize))

  # Transform the boolean array back to an image with the correct voxels set to the label value
  newMask_arr = numpy.zeros(ma_arr.shape, dtype='int')
  newMask_arr[ma_arr] = label

  newMask = sitk.GetImageFromArray(newMask_arr)
  newMask.CopyInformation(maskNode)
  logger.debug('Resegmentation complete, new size: %d voxels (excluded %d voxels)', roiSize, oldSize - roiSize)

  return newMask



[docs]def getOriginalImage(inputImage, inputMask, **kwargs):
  """
  This function does not apply any filter, but returns the original image. This function is needed to
  dynamically expose the original image as a valid image type.

  :return: Yields original image, 'original' and ``kwargs``
  """
  global logger
  logger.debug('Yielding original image')
  yield inputImage, 'original', kwargs



[docs]def getLoGImage(inputImage, inputMask, **kwargs):
  r"""
  Applies a Laplacian of Gaussian filter to the input image and yields a derived image for each sigma value specified.

  A Laplacian of Gaussian image is obtained by convolving the image with the second derivative (Laplacian) of a Gaussian
  kernel.

  The Gaussian kernel is used to smooth the image and is defined as

  .. math::

    G(x, y, z, \sigma) = \frac{1}{(\sigma \sqrt{2 \pi})^3}e^{-\frac{x^2 + y^2 + z^2}{2\sigma^2}}

  The Gaussian kernel is convolved by the laplacian kernel :math:`\nabla^2G(x, y, z)`, which is sensitive to areas with
  rapidly changing intensities, enhancing edges. The width of the filter in the Gaussian kernel is determined by
  :math:`\sigma` and can be used to emphasize more fine (low :math:`\sigma` values) or coarse (high :math:`\sigma`
  values) textures.

  .. warning::

    The LoG filter implemented in PyRadiomics is a 3D LoG filter, and therefore requires 3D input. Features using a
    single slice (2D) segmentation can still be extracted, but the input image *must* be a 3D image, with a minimum size
    in all dimensions :math:`\geq \sigma`. If input image is too small, a warning is logged and :math:`\sigma` value is
    skipped. Moreover, the image size *must* be at least 4 voxels in each dimensions, if this constraint is not met, no
    LoG derived images can be generated.

  Following settings are possible:

  - sigma: List of floats or integers, must be greater than 0. Filter width (mm) to use for the Gaussian kernel
    (determines coarseness).

  .. warning::
    Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function
    will return an empty dictionary.

  Returned filter name reflects LoG settings:
  log-sigma-<sigmaValue>-3D.

  References:

  - `SimpleITK Doxygen documentation
    <https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1LaplacianRecursiveGaussianImageFilter.html>`_
  - `ITK Doxygen documentation <https://itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html>`_
  - `<https://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian>`_

  :return: Yields log filtered image for each specified sigma, corresponding image type name and ``kwargs`` (customized
    settings).
  """
  global logger

  logger.debug('Generating LoG images')

  # Check if size of image is > 4 in all 3D directions (otherwise, LoG filter will fail)
  size = numpy.array(inputImage.GetSize())
  spacing = numpy.array(inputImage.GetSpacing())

  if numpy.min(size) < 4:
    logger.warning('Image too small to apply LoG filter, size: %s', size)
    return

  sigmaValues = kwargs.get('sigma', [])

  for sigma in sigmaValues:
    logger.info('Computing LoG with sigma %g', sigma)

    if sigma > 0.0:
      if numpy.all(size >= numpy.ceil(sigma / spacing) + 1):
        lrgif = sitk.LaplacianRecursiveGaussianImageFilter()
        lrgif.SetNormalizeAcrossScale(True)
        lrgif.SetSigma(sigma)
        inputImageName = 'log-sigma-%s-mm-3D' % (str(sigma).replace('.', '-'))
        logger.debug('Yielding %s image', inputImageName)
        yield lrgif.Execute(inputImage), inputImageName, kwargs
      else:
        logger.warning('applyLoG: sigma(%g)/spacing(%s) + 1 must be greater than the size(%s) of the inputImage',
                       sigma,
                       spacing,
                       size)
    else:
      logger.warning('applyLoG: sigma must be greater than 0.0: %g', sigma)



[docs]def getWaveletImage(inputImage, inputMask, **kwargs):
  """
  Applies wavelet filter to the input image and yields the decompositions and the approximation.

  Following settings are possible:

  - start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions
    from which a signature is calculated
  - level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.
  - wavelet ["coif1"]: string, type of wavelet decomposition. Enumerated value, validated against possible values
    present in the ``pyWavelet.wavelist()``. Current possible values (pywavelet version 0.4.0) (where an
    aditional number is needed, range of values is indicated in []):

    - haar
    - dmey
    - sym[2-20]
    - db[1-20]
    - coif[1-5]
    - bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]
    - rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

  Returned filter name reflects wavelet type:
  wavelet[level]-<decompositionName>

  N.B. only levels greater than the first level are entered into the name.

  :return: Yields each wavelet decomposition and final approximation, corresponding imaget type name and ``kwargs``
    (customized settings).
  """
  global logger

  logger.debug('Generating Wavelet images')

  Nd = inputImage.GetDimension()
  axes = list(range(Nd - 1, -1, -1))
  if kwargs.get('force2D', False):
    axes.remove(kwargs.get('force2Ddimension', 0))

  approx, ret = _swt3(inputImage, tuple(axes), **kwargs)

  for idx, wl in enumerate(ret, start=1):
    for decompositionName, decompositionImage in wl.items():
      logger.info('Computing Wavelet %s', decompositionName)

      if idx == 1:
        inputImageName = 'wavelet-%s' % (decompositionName)
      else:
        inputImageName = 'wavelet%s-%s' % (idx, decompositionName)
      logger.debug('Yielding %s image', inputImageName)
      yield decompositionImage, inputImageName, kwargs

  if len(ret) == 1:
    inputImageName = 'wavelet-%s' % ('L' * len(axes))
  else:
    inputImageName = 'wavelet%s-%s' % (len(ret), ('L' * len(axes)))
  logger.debug('Yielding approximation (%s) image', inputImageName)
  yield approx, inputImageName, kwargs



def _swt3(inputImage, axes, **kwargs):  # Stationary Wavelet Transform 3D
  wavelet = kwargs.get('wavelet', 'coif1')
  level = kwargs.get('level', 1)
  start_level = kwargs.get('start_level', 0)

  matrix = sitk.GetArrayFromImage(inputImage)  # This function gets a numpy array from the SimpleITK Image "inputImage"
  matrix = numpy.asarray(matrix) # The function np.asarray converts "matrix" (which could be also a tuple) into an array.

  original_shape = matrix.shape
  # original_shape becomes a tuple (?,?,?) containing the number of rows, columns, and slices of the image
  # this is of course dependent on the number of dimensions, but the same principle holds
  padding = tuple([(0, 1 if dim % 2 != 0 else 0) for dim in original_shape])
  # padding is necessary because of pywt.swtn (see function Notes)
  data = matrix.copy()  # creates a modifiable copy of "matrix" and we call it "data"
  data = numpy.pad(data, padding, 'wrap')  # padding the tuple "padding" previously computed

  if not isinstance(wavelet, pywt.Wavelet):
    wavelet = pywt.Wavelet(wavelet)

  for i in range(0, start_level):  # if start_level = 0 (default) this for loop never gets executed
    # compute all decompositions and saves them in "dec" dict
    dec = pywt.swtn(data, wavelet, level=1, start_level=0, axes=axes)[0]
    # copies in "data" just the "aaa" decomposition (i.e. approximation; No of consecutive 'a's = len(axes))
    data = dec['a' * len(axes)].copy()

  ret = []  # initialize empty list
  for i in range(start_level, start_level + level):
    # compute the n-dimensional stationary wavelet transform
    dec = pywt.swtn(data, wavelet, level=1, start_level=0, axes=axes)[0]
    # Copy the approximation into data (approximation in output / input for next levels)
    data = dec['a' * len(axes)].copy()

    dec_im = {}  # initialize empty dict
    for decName, decImage in six.iteritems(dec):
      # Returning the approximiation is done only for the last loop,
      # and is handled separately below (by building it from `data`)
      # There for, skip it here
      if decName == 'a' * len(axes):
        continue
      decTemp = decImage.copy()
      decTemp = decTemp[tuple(slice(None, -1 if dim % 2 != 0 else None) for dim in original_shape)]
      sitkImage = sitk.GetImageFromArray(decTemp)
      sitkImage.CopyInformation(inputImage)
      dec_im[str(decName).replace('a', 'L').replace('d', 'H')] = sitkImage
      # modifies 'a' with 'L' (Low-pass filter) and 'd' with 'H' (High-pass filter)

    ret.append(dec_im)  # appending all the filtered sitk images (stored in "dec_im") to the "ret" list

  data = data[tuple(slice(None, -1 if dim % 2 != 0 else None) for dim in original_shape)]
  approximation = sitk.GetImageFromArray(data)
  approximation.CopyInformation(inputImage)

  return approximation, ret  # returns the approximation and the detail (ret) coefficients of the stationary wavelet decomposition


[docs]def getSquareImage(inputImage, inputMask, **kwargs):
  r"""
  Computes the square of the image intensities.

  Resulting values are rescaled on the range of the initial original image and negative intensities are made
  negative in resultant filtered image.

  :math:`f(x) = (cx)^2,\text{ where } c=\displaystyle\frac{1}{\sqrt{\max(|x|)}}`

  Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.

  :return: Yields square filtered image, 'square' and ``kwargs`` (customized settings).
  """
  global logger

  im = sitk.GetArrayFromImage(inputImage)
  im = im.astype('float64')
  coeff = 1 / numpy.sqrt(numpy.max(numpy.abs(im)))
  im = (coeff * im) ** 2
  im = sitk.GetImageFromArray(im)
  im.CopyInformation(inputImage)

  logger.debug('Yielding square image')
  yield im, 'square', kwargs



[docs]def getSquareRootImage(inputImage, inputMask, **kwargs):
  r"""
  Computes the square root of the absolute value of image intensities.

  Resulting values are rescaled on the range of the initial original image and negative intensities are made
  negative in resultant filtered image.

  :math:`f(x) = \left\{ {\begin{array}{lcl}
  \sqrt{cx} & \mbox{for} & x \ge 0 \\
  -\sqrt{-cx} & \mbox{for} & x < 0\end{array}} \right.,\text{ where } c=\max(|x|)`

  Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.

  :return: Yields square root filtered image, 'squareroot' and ``kwargs`` (customized settings).
  """
  global logger

  im = sitk.GetArrayFromImage(inputImage)
  im = im.astype('float64')
  coeff = numpy.max(numpy.abs(im))
  im[im > 0] = numpy.sqrt(im[im > 0] * coeff)
  im[im < 0] = - numpy.sqrt(-im[im < 0] * coeff)
  im = sitk.GetImageFromArray(im)
  im.CopyInformation(inputImage)

  logger.debug('Yielding squareroot image')
  yield im, 'squareroot', kwargs



[docs]def getLogarithmImage(inputImage, inputMask, **kwargs):
  r"""
  Computes the logarithm of the absolute value of the original image + 1.

  Resulting values are rescaled on the range of the initial original image and negative intensities are made
  negative in resultant filtered image.

  :math:`f(x) = \left\{ {\begin{array}{lcl}
  c\log{(x + 1)} & \mbox{for} & x \ge 0 \\
  -c\log{(-x + 1)} & \mbox{for} & x < 0\end{array}} \right. \text{, where } c=\frac{\max(|x|)}{\log(\max(|x|) + 1)}`

  Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.

  :return: Yields logarithm filtered image, 'logarithm' and ``kwargs`` (customized settings)
  """
  global logger

  im = sitk.GetArrayFromImage(inputImage)
  im = im.astype('float64')
  im_max = numpy.max(numpy.abs(im))
  im[im > 0] = numpy.log(im[im > 0] + 1)
  im[im < 0] = - numpy.log(- (im[im < 0] - 1))
  im = im * (im_max / numpy.max(numpy.abs(im)))
  im = sitk.GetImageFromArray(im)
  im.CopyInformation(inputImage)

  logger.debug('Yielding logarithm image')
  yield im, 'logarithm', kwargs



[docs]def getExponentialImage(inputImage, inputMask, **kwargs):
  r"""
  Computes the exponential of the original image.

  Resulting values are rescaled on the range of the initial original image.

  :math:`f(x) = e^{cx},\text{ where } c=\displaystyle\frac{\log(\max(|x|))}{\max(|x|)}`

  Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.

  :return: Yields exponential filtered image, 'exponential' and ``kwargs`` (customized settings)
  """
  global logger

  im = sitk.GetArrayFromImage(inputImage)
  im = im.astype('float64')
  im_max = numpy.max(numpy.abs(im))
  coeff = numpy.log(im_max) / im_max
  im = numpy.exp(coeff * im)
  im = sitk.GetImageFromArray(im)
  im.CopyInformation(inputImage)

  logger.debug('Yielding exponential image')
  yield im, 'exponential', kwargs



[docs]def getGradientImage(inputImage, inputMask, **kwargs):
  r"""
  Compute and return the Gradient Magnitude in the image.
  By default, takes into account the image spacing, this can be switched off by specifying
  ``gradientUseSpacing = False``.

  References:

  - `SimpleITK documentation
    <https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1GradientMagnitudeImageFilter.html>`_
  - `<https://en.wikipedia.org/wiki/Image_gradient>`_
  """
  gmif = sitk.GradientMagnitudeImageFilter()
  gmif.SetUseImageSpacing(kwargs.get('gradientUseSpacing', True))
  im = gmif.Execute(inputImage)
  yield im, 'gradient', kwargs



[docs]def getLBP2DImage(inputImage, inputMask, **kwargs):
  """
  Compute and return the Local Binary Pattern (LBP) in 2D. If ``force2D`` is set to false (= feature extraction in 3D) a
  warning is logged, as this filter processes the image in a by-slice operation. The plane in which the LBP is
  applied can be controlled by the ``force2Ddimension`` parameter (see also :py:func:`generateAngles`).

  Following settings are possible (in addition to ``force2Ddimension``):

    - ``lbp2DRadius`` [1]: Float, specifies the radius in which the neighbours should be sampled
    - ``lbp2DSamples`` [9]: Integer, specifies the number of samples to use
    - ``lbp2DMethod`` ['uniform']: String, specifies the method for computing the LBP to use.

  For more information see `scikit documentation
  <http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern>`_

  :return: Yields LBP filtered image, 'lbp-2D' and ``kwargs`` (customized settings)

  .. note::
    LBP can often return only a very small number of different gray levels. A customized bin width is often needed.
  .. warning::
    Requires package ``scikit-image`` to function. If not available, this filter logs a warning and does not yield an image.

  References:

  - T. Ojala, M. Pietikainen, and D. Harwood (1994), "Performance evaluation of texture measures with classification
    based on Kullback discrimination of distributions", Proceedings of the 12th IAPR International Conference on Pattern
    Recognition (ICPR 1994), vol. 1, pp. 582 - 585.
  - T. Ojala, M. Pietikainen, and D. Harwood (1996), "A Comparative Study of Texture Measures with Classification Based
    on Feature Distributions", Pattern Recognition, vol. 29, pp. 51-59.
  """
  global logger
  try:
    from skimage.feature import local_binary_pattern
  except ImportError:
    logger.warning('Could not load required package "skimage", cannot implement filter LBP 2D')
    return

  lbp_radius = kwargs.get('lbp2DRadius', 1)
  lbp_samples = kwargs.get('lbp2DSamples', 8)
  lbp_method = kwargs.get('lbp2DMethod', 'uniform')

  im_arr = sitk.GetArrayFromImage(inputImage)

  Nd = inputImage.GetDimension()
  if Nd == 3:
    # Warn the user if features are extracted in 3D, as this function calculates LBP in 2D
    if not kwargs.get('force2D', False):
      logger.warning('Calculating Local Binary Pattern in 2D, but extracting features in 3D. Use with caution!')
    lbp_axis = kwargs.get('force2Ddimension', 0)

    im_arr = im_arr.swapaxes(0, lbp_axis)
    for idx in range(im_arr.shape[0]):
      im_arr[idx, ...] = local_binary_pattern(im_arr[idx, ...], P=lbp_samples, R=lbp_radius, method=lbp_method)
    im_arr = im_arr.swapaxes(0, lbp_axis)
  elif Nd == 2:
    im_arr = local_binary_pattern(im_arr, P=lbp_samples, R=lbp_radius, method=lbp_method)
  else:
    logger.warning('LBP 2D is only available for 2D or 3D with forced 2D extraction')
    return

  im = sitk.GetImageFromArray(im_arr)
  im.CopyInformation(inputImage)

  yield im, 'lbp-2D', kwargs



[docs]def getLBP3DImage(inputImage, inputMask, **kwargs):
  """
  Compute and return the Local Binary Pattern (LBP) in 3D using spherical harmonics.
  If ``force2D`` is set to true (= feature extraction in 2D) a warning is logged.

  LBP is only calculated for voxels segmented in the mask

  Following settings are possible:

    - ``lbp3DLevels`` [2]: integer, specifies the the number of levels in spherical harmonics to use.
    - ``lbp3DIcosphereRadius`` [1]: Float, specifies the radius in which the neighbours should be sampled
    - ``lbp3DIcosphereSubdivision`` [1]: Integer, specifies the number of subdivisions to apply in the icosphere

  :return: Yields LBP filtered image for each level, 'lbp-3D-m<level>' and ``kwargs`` (customized settings).
           Additionally yields the kurtosis image, 'lbp-3D-k' and ``kwargs``.

  .. note::
    LBP can often return only a very small number of different gray levels. A customized bin width is often needed.
  .. warning::
    Requires package ``scipy`` and ``trimesh`` to function. If not available, this filter logs a warning and does not
    yield an image.

  References:

  - Banerjee, J, Moelker, A, Niessen, W.J, & van Walsum, T.W. (2013), "3D LBP-based rotationally invariant region
    description." In: Park JI., Kim J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer
    Science, vol 7728. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-37410-4_3
  """
  global logger
  Nd = inputImage.GetDimension()
  if Nd != 3:
    logger.warning('LBP 3D only available for 3 dimensional images, found %i dimensions', Nd)
    return

  try:
    from scipy.stats import kurtosis
    from scipy.ndimage.interpolation import map_coordinates
    from scipy.special import sph_harm
    from trimesh.creation import icosphere
  except ImportError:
    logger.warning('Could not load required package "scipy" or "trimesh", cannot implement filter LBP 3D')
    return

  # Warn the user if features are extracted in 2D, as this function calculates LBP in 3D
  if kwargs.get('force2D', False):
    logger.warning('Calculating Local Binary Pattern in 3D, but extracting features in 2D. Use with caution!')

  label = kwargs.get('label', 1)

  lbp_levels = kwargs.get('lbp3DLevels', 2)
  lbp_icosphereRadius = kwargs.get('lbp3DIcosphereRadius', 1)
  lbp_icosphereSubdivision = kwargs.get('lbp3DIcosphereSubdivision', 1)

  im_arr = sitk.GetArrayFromImage(inputImage)
  ma_arr = sitk.GetArrayFromImage(inputMask)

  # Variables used in the shape comments:
  # Np Number of voxels
  # Nv Number of vertices

  # Vertices icosahedron for spherical sampling
  coords_icosahedron = numpy.array(icosphere(lbp_icosphereSubdivision, lbp_icosphereRadius).vertices)  # shape(Nv, 3)

  # Corresponding polar coordinates
  theta = numpy.arccos(numpy.true_divide(coords_icosahedron[:, 2], lbp_icosphereRadius))
  phi = numpy.arctan2(coords_icosahedron[:, 1], coords_icosahedron[:, 0])

  # Corresponding spherical harmonics coefficients Y_{m, n, theta, phi}
  Y = sph_harm(0, 0, theta, phi)  # shape(Nv,)
  n_ix = numpy.array(0)

  for n in range(1, lbp_levels):
    for m in range(-n, n + 1):
      n_ix = numpy.append(n_ix, n)
      Y = numpy.column_stack((Y, sph_harm(m, n, theta, phi)))
  # shape (Nv, x) where x is the number of iterations in the above loops + 1

  # Get labelled coordinates
  ROI_coords = numpy.where(ma_arr == label)  # shape(3, Np)

  # Interpolate f (samples on the spheres across the entire volume)
  coords = numpy.array(ROI_coords).T[None, :, :] + coords_icosahedron[:, None, :]  # shape(Nv, Np, 3)
  f = map_coordinates(im_arr, coords.T, order=3)  # Shape(Np, Nv)  Note that 'Np' and 'Nv' are swapped due to .T

  # Compute spherical Kurtosis
  k = kurtosis(f, axis=1)  # shape(Np,)

  # Apply sign function
  f_centroids = im_arr[ROI_coords]  # Shape(Np,)
  f = numpy.greater_equal(f, f_centroids[:, None]).astype(int)  # Shape(Np, Nv)

  # Compute c_{m,n} coefficients
  c = numpy.multiply(f[:, :, None], Y[None, :, :])  # Shape(Np, Nv, x)
  c = c.sum(axis=1)  # Shape(Np, x)

  # Integrate over m
  f = numpy.multiply(c[:, None, n_ix == 0], Y[None, :, n_ix == 0])  # Shape (Np, Nv, 1)
  for n in range(1, lbp_levels):
    f = numpy.concatenate((f,
                           numpy.sum(numpy.multiply(c[:, None, n_ix == n], Y[None, :, n_ix == n]),
                                     axis=2, keepdims=True)
                           ),
                          axis=2)
  # Shape f (Np, Nv, levels)

  # Compute L2-Norm
  f = numpy.sqrt(numpy.sum(f ** 2, axis=1))  # shape(Np, levels)

  # Keep only Real Part
  f = numpy.real(f)  # shape(Np, levels)
  k = numpy.real(k)  # shape(Np,)

  # Yield the derived images for each level
  result = numpy.ndarray(im_arr.shape)
  for l_idx in range(lbp_levels):
    result[ROI_coords] = f[:, l_idx]

    # Create a SimpleITK image
    im = sitk.GetImageFromArray(result)
    im.CopyInformation(inputImage)

    yield im, 'lbp-3D-m%d' % (l_idx + 1), kwargs

  # Yield Kurtosis
  result[ROI_coords] = k

  # Create a SimpleITK image
  im = sitk.GetImageFromArray(result)
  im.CopyInformation(inputImage)

  yield im, 'lbp-3D-k', kwargs
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  Source code for radiomics.ngtdm

import numpy

from radiomics import base, cMatrices


[docs]class RadiomicsNGTDM(base.RadiomicsFeaturesBase):
  r"""
  A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray value and the average gray value
  of its neighbours within distance :math:`\delta`. The sum of absolute differences for gray level :math:`i` is stored in the matrix.
  Let :math:`\textbf{X}_{gl}` be a set of segmented voxels and :math:`x_{gl}(j_x,j_y,j_z) \in \textbf{X}_{gl}` be the gray level of a voxel at postion
  :math:`(j_x,j_y,j_z)`, then the average gray level of the neigbourhood is:

  .. math::

    \bar{A}_i &= \bar{A}(j_x, j_y, j_z) \\
    &= \displaystyle\frac{1}{W} \displaystyle\sum_{k_x=-\delta}^{\delta}\displaystyle\sum_{k_y=-\delta}^{\delta}
    \displaystyle\sum_{k_z=-\delta}^{\delta}{x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z)}, \\
    &\mbox{where }(k_x,k_y,k_z)\neq(0,0,0)\mbox{ and } x_{gl}(j_x+k_x, j_y+k_y, j_z+k_z) \in \textbf{X}_{gl}

  Here, :math:`W` is the number of voxels in the neighbourhood that are also in :math:`\textbf{X}_{gl}`.

  As a two dimensional example, let the following matrix :math:`\textbf{I}` represent a 4x4 image,
  having 5 discrete grey levels, but no voxels with gray level 4:

  .. math::
    \textbf{I} = \begin{bmatrix}
    1 & 2 & 5 & 2\\
    3 & 5 & 1 & 3\\
    1 & 3 & 5 & 5\\
    3 & 1 & 1 & 1\end{bmatrix}

  The following NGTDM can be obtained:

  .. math::
    \begin{array}{cccc}
    i & n_i & p_i & s_i\\
    \hline
    1 & 6 & 0.375 & 13.35\\
    2 & 2 & 0.125 & 2.00\\
    3 & 4 & 0.25  & 2.63\\
    4 & 0 & 0.00  & 0.00\\
    5 & 4 & 0.25  & 10.075\end{array}

  6 pixels have gray level 1, therefore:

  :math:`s_1 = |1-10/3| + |1-30/8| + |1-15/5| + |1-13/5| + |1-15/5| + |1-11/3| = 13.35`

  For gray level 2, there are 2 pixels, therefore:

  :math:`s_2 = |2-15/5| + |2-9/3| = 2`

  Similar for gray values 3 and 5:

  :math:`s_3 = |3-12/5| + |3-18/5| + |3-20/8| + |3-5/3| = 3.03 \\
  s_5 = |5-14/5| + |5-18/5| + |5-20/8| + |5-11/5| = 10.075`

  Let:

  :math:`n_i` be the number of voxels in :math:`X_{gl}` with gray level :math:`i`

  :math:`N_{v,p}` be the total number of voxels in :math:`X_{gl}` and equal to :math:`\sum{n_i}` (i.e. the number of voxels
  with a valid region; at least 1 neighbor). :math:`N_{v,p} \leq N_p`, where :math:`N_p` is the total number of voxels in the ROI.

  :math:`p_i` be the gray level probability and equal to :math:`n_i/N_v`

  :math:`s_i = \left\{ {\begin{array} {rcl}
  \sum^{n_i}{|i-\bar{A}_i|} & \mbox{for} & n_i \neq 0 \\
  0 & \mbox{for} & n_i = 0 \end{array}}\right.`
  be the sum of absolute differences for gray level :math:`i`

  :math:`N_g` be the number of discreet gray levels

  :math:`N_{g,p}` be the number of gray levels where :math:`p_i \neq 0`

  The following class specific settings are possible:

  - distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
    angles should be generated.

  References

  - Amadasun M, King R; Textural features corresponding to textural properties;
    Systems, Man and Cybernetics, IEEE Transactions on 19:1264-1274 (1989). doi: 10.1109/21.44046
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsNGTDM, self).__init__(inputImage, inputMask, **kwargs)

    self.P_ngtdm = None
    self.imageArray = self._applyBinning(self.imageArray)

  def _initCalculation(self, voxelCoordinates=None):
    self.P_ngtdm = self._calculateMatrix(voxelCoordinates)
    self._calculateCoefficients()

  def _calculateMatrix(self, voxelCoordinates=None):
    matrix_args = [
      self.imageArray,
      self.maskArray,
      numpy.array(self.settings.get('distances', [1])),
      self.coefficients['Ng'],
      self.settings.get('force2D', False),
      self.settings.get('force2Ddimension', 0)
    ]
    if self.voxelBased:
      matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]

    P_ngtdm = cMatrices.calculate_ngtdm(*matrix_args)  # shape (Nvox, Ng, 3)

    # Delete empty grey levels
    emptyGrayLevels = numpy.where(numpy.sum(P_ngtdm[:, :, 0], 0) == 0)
    P_ngtdm = numpy.delete(P_ngtdm, emptyGrayLevels, 1)

    return P_ngtdm

  def _calculateCoefficients(self):
    # No of voxels that have a valid region, lesser equal to Np
    Nvp = numpy.sum(self.P_ngtdm[:, :, 0], 1)  # shape (Nvox,)
    self.coefficients['Nvp'] = Nvp  # shape (Nv,)

    # Normalize P_ngtdm[:, 0] (= n_i) to obtain p_i
    self.coefficients['p_i'] = self.P_ngtdm[:, :, 0] / Nvp[:, None]

    self.coefficients['s_i'] = self.P_ngtdm[:, :, 1]
    self.coefficients['ivector'] = self.P_ngtdm[:, :, 2]

    # Ngp = number of graylevels, for which p_i > 0
    self.coefficients['Ngp'] = numpy.sum(self.P_ngtdm[:, :, 0] > 0, 1)

    p_zero = numpy.where(self.coefficients['p_i'] == 0)
    self.coefficients['p_zero'] = p_zero

[docs]  def getCoarsenessFeatureValue(self):
    r"""
    Calculate and return the coarseness.

    :math:`Coarseness = \frac{1}{\sum^{N_g}_{i=1}{p_{i}s_{i}}}`

    Coarseness is a measure of average difference between the center voxel and its neighbourhood and is an indication
    of the spatial rate of change. A higher value indicates a lower spatial change rate and a locally more uniform texture.

    N.B. :math:`\sum^{N_g}_{i=1}{p_{i}s_{i}}` potentially evaluates to 0 (in case of a completely homogeneous image).
    If this is the case, an arbitrary value of :math:`10^6` is returned.
    """
    p_i = self.coefficients['p_i']
    s_i = self.coefficients['s_i']
    sum_coarse = numpy.sum(p_i * s_i, 1)

    sum_coarse[sum_coarse != 0] = 1 / sum_coarse[sum_coarse != 0]
    sum_coarse[sum_coarse == 0] = 1e6
    return sum_coarse


[docs]  def getContrastFeatureValue(self):
    r"""
    Calculate and return the contrast.

    :math:`Contrast = \left(\frac{1}{N_{g,p}(N_{g,p}-1)}\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p_{i}p_{j}(i-j)^2}\right)
    \left(\frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i=1}{s_i}\right)\text{, where }p_i \neq 0, p_j \neq 0`

    Contrast is a measure of the spatial intensity change, but is also dependent on the overall gray level dynamic range.
    Contrast is high when both the dynamic range and the spatial change rate are high, i.e. an image with a large range
    of gray levels, with large changes between voxels and their neighbourhood.

    N.B. In case of a completely homogeneous image, :math:`N_{g,p} = 1`, which would result in a division by 0. In this
    case, an arbitray value of 0 is returned.
    """
    Ngp = self.coefficients['Ngp']  # shape (Nvox,)
    Nvp = self.coefficients['Nvp']  # shape (Nvox,)
    p_i = self.coefficients['p_i']  # shape (Nvox, Ng)
    s_i = self.coefficients['s_i']  # shape (Nvox, Ng)
    i = self.coefficients['ivector']  # shape (Ng,)

    div = Ngp * (Ngp - 1)

    # Terms where p_i = 0 or p_j = 0 will calculate as 0, and therefore do not affect the sum
    contrast = (numpy.sum(p_i[:, :, None] * p_i[:, None, :] * (i[:, :, None] - i[:, None, :]) ** 2, (1, 2)) *
                numpy.sum(s_i, 1) / Nvp)

    contrast[div != 0] /= div[div != 0]
    contrast[div == 0] = 0

    return contrast


[docs]  def getBusynessFeatureValue(self):
    r"""
    Calculate and return the busyness.

    :math:`Busyness = \frac{\sum^{N_g}_{i = 1}{p_{i}s_{i}}}{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{|ip_i - jp_j|}}\text{, where }p_i \neq 0, p_j \neq 0`

    A measure of the change from a pixel to its neighbour. A high value for busyness indicates a 'busy' image, with rapid
    changes of intensity between pixels and its neighbourhood.

    N.B. if :math:`N_{g,p} = 1`, then :math:`busyness = \frac{0}{0}`. If this is the case, 0 is returned, as it concerns
    a fully homogeneous region.
    """
    p_i = self.coefficients['p_i']  # shape (Nv, Ngp)
    s_i = self.coefficients['s_i']  # shape (Nv, Ngp)
    i = self.coefficients['ivector']  # shape (Nv, Ngp)
    p_zero = self.coefficients['p_zero']  # shape (2, z)

    i_pi = i * p_i
    absdiff = numpy.abs(i_pi[:, :, None] - i_pi[:, None, :])

    # Remove terms from the sum where p_i = 0 or p_j = 0
    absdiff[p_zero[0], :, p_zero[1]] = 0
    absdiff[p_zero[0], p_zero[1], :] = 0

    absdiff = numpy.sum(absdiff, (1, 2))

    busyness = numpy.sum(p_i * s_i, 1)
    busyness[absdiff != 0] = busyness[absdiff != 0] / absdiff[absdiff != 0]
    busyness[absdiff == 0] = 0
    return busyness


[docs]  def getComplexityFeatureValue(self):
    r"""
    Calculate and return the complexity.

    :math:`Complexity = \frac{1}{N_{v,p}}\displaystyle\sum^{N_g}_{i = 1}\displaystyle\sum^{N_g}_{j = 1}{|i - j|
    \frac{p_{i}s_{i} + p_{j}s_{j}}{p_i + p_j}}\text{, where }p_i \neq 0, p_j \neq 0`

    An image is considered complex when there are many primitive components in the image, i.e. the image is non-uniform
    and there are many rapid changes in gray level intensity.
    """
    Nvp = self.coefficients['Nvp']  # shape (Nv,)
    p_i = self.coefficients['p_i']  # shape (Nv, Ngp)
    s_i = self.coefficients['s_i']  # shape (Nv, Ngp)
    i = self.coefficients['ivector']  # shape (Nv, Ngp)
    p_zero = self.coefficients['p_zero']  # shape (2, z)

    pi_si = p_i * s_i
    numerator = pi_si[:, :, None] + pi_si[:, None, :]

    # Remove terms from the sum where p_i = 0 or p_j = 0
    numerator[p_zero[0], :, p_zero[1]] = 0
    numerator[p_zero[0], p_zero[1], :] = 0

    divisor = p_i[:, :, None] + p_i[:, None, :]
    divisor[divisor == 0] = 1  # Prevent division by 0 errors. (Numerator is 0 at those indices too)

    complexity = numpy.sum(numpy.abs(i[:, :, None] - i[:, None, :]) * numerator / divisor, (1, 2)) / Nvp

    return complexity


[docs]  def getStrengthFeatureValue(self):
    r"""
    Calculate and return the strength.

    :math:`Strength = \frac{\sum^{N_g}_{i = 1}\sum^{N_g}_{j = 1}{(p_i + p_j)(i-j)^2}}{\sum^{N_g}_{i = 1}{s_i}}\text{, where }p_i \neq 0, p_j \neq 0`

    Strength is a measure of the primitives in an image. Its value is high when the primitives are easily defined and
    visible, i.e. an image with slow change in intensity but more large coarse differences in gray level intensities.

    N.B. :math:`\sum^{N_g}_{i=1}{s_i}` potentially evaluates to 0 (in case of a completely homogeneous image).
    If this is the case, 0 is returned.
    """
    p_i = self.coefficients['p_i']  # shape (Nv, Ngp)
    s_i = self.coefficients['s_i']  # shape (Nv, Ngp)
    i = self.coefficients['ivector']  # shape (Nv, Ngp)
    p_zero = self.coefficients['p_zero']  # shape (2, z)

    sum_s_i = numpy.sum(s_i, 1)

    strength = (p_i[:, :, None] + p_i[:, None, :]) * (i[:, :, None] - i[:, None, :]) ** 2

    # Remove terms from the sum where p_i = 0 or p_j = 0
    strength[p_zero[0], :, p_zero[1]] = 0
    strength[p_zero[0], p_zero[1], :] = 0

    strength = numpy.sum(strength, (1, 2))
    strength[sum_s_i != 0] /= sum_s_i[sum_s_i != 0]
    strength[sum_s_i == 0] = 0

    return strength
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  Source code for radiomics.shape

import numpy
import SimpleITK as sitk

from radiomics import base, cShape, deprecated


[docs]class RadiomicsShape(base.RadiomicsFeaturesBase):
  r"""
  In this group of features we included descriptors of the three-dimensional size and shape of the ROI. These features
  are independent from the gray level intensity distribution in the ROI and are therefore only calculated on the
  non-derived image and mask.

  Unless otherwise specified, features are derived from the approximated shape defined by the triangle mesh. To build
  this mesh, vertices (points) are first defined as points halfway on an edge between a voxel included in the ROI and
  one outside the ROI. By connecting these vertices a mesh of connected triangles is obtained, with each triangle
  defined by 3 adjacent vertices, which shares each side with exactly one other triangle.

  This mesh is generated using a marching cubes algorithm. In this algorithm, a 2x2 cube is moved through the mask
  space. For each position, the corners of the cube are then marked 'segmented' (1) or 'not segmented' (0). Treating the
  corners as specific bits in a binary number, a unique cube-index is obtained (0-255). This index is then used to
  determine which triangles are present in the cube, which are defined in a lookup table.

  These triangles are defined in such a way, that the normal (obtained from the cross product of vectors describing 2
  out of 3 edges) are always oriented in the same direction. For PyRadiomics, the calculated normals are always pointing
  outward. This is necessary to obtain the correct signed volume used in calculation of ``MeshVolume``.

  Let:

  - :math:`N_v` represent the number of voxels included in the ROI
  - :math:`N_f` represent the number of faces (triangles) defining the Mesh.
  - :math:`V` the volume of the mesh in mm\ :sup:`3`, calculated by :py:func:`getMeshVolumeFeatureValue`
  - :math:`A` the surface area of the mesh in mm\ :sup:`2`, calculated by :py:func:`getMeshSurfaceAreaFeatureValue`

  References:

  - Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput
    Graph `Internet <http://portal.acm.org/citation.cfm?doid=37402.37422>`_. 1987;21:163-9.
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    assert inputMask.GetDimension() == 3, 'Shape features are only available in 3D. If 2D, use shape2D instead'
    super(RadiomicsShape, self).__init__(inputImage, inputMask, **kwargs)

  def _initVoxelBasedCalculation(self):
    raise NotImplementedError('Shape features are not available in voxel-based mode')

  def _initSegmentBasedCalculation(self):

    self.pixelSpacing = numpy.array(self.inputImage.GetSpacing()[::-1])

    # Pad inputMask to prevent index-out-of-range errors
    self.logger.debug('Padding the mask with 0s')

    cpif = sitk.ConstantPadImageFilter()

    padding = numpy.tile(1, 3)
    try:
      cpif.SetPadLowerBound(padding)
      cpif.SetPadUpperBound(padding)
    except TypeError:
      # newer versions of SITK/python want a tuple or list
      cpif.SetPadLowerBound(padding.tolist())
      cpif.SetPadUpperBound(padding.tolist())

    self.inputMask = cpif.Execute(self.inputMask)

    # Reassign self.maskArray using the now-padded self.inputMask
    self.maskArray = (sitk.GetArrayFromImage(self.inputMask) == self.label)
    self.labelledVoxelCoordinates = numpy.where(self.maskArray != 0)

    self.logger.debug('Pre-calculate Volume, Surface Area and Eigenvalues')

    # Volume, Surface Area and eigenvalues are pre-calculated

    # Compute Surface Area and volume
    self.SurfaceArea, self.Volume, self.diameters = cShape.calculate_coefficients(self.maskArray, self.pixelSpacing)

    # Compute eigenvalues and -vectors
    Np = len(self.labelledVoxelCoordinates[0])
    coordinates = numpy.array(self.labelledVoxelCoordinates, dtype='int').transpose((1, 0))  # Transpose equals zip(*a)
    physicalCoordinates = coordinates * self.pixelSpacing[None, :]
    physicalCoordinates -= numpy.mean(physicalCoordinates, axis=0)  # Centered at 0
    physicalCoordinates /= numpy.sqrt(Np)
    covariance = numpy.dot(physicalCoordinates.T.copy(), physicalCoordinates)
    self.eigenValues = numpy.linalg.eigvals(covariance)

    # Correct machine precision errors causing very small negative eigen values in case of some 2D segmentations
    machine_errors = numpy.bitwise_and(self.eigenValues < 0, self.eigenValues > -1e-10)
    if numpy.sum(machine_errors) > 0:
      self.logger.warning('Encountered %d eigenvalues < 0 and > -1e-10, rounding to 0', numpy.sum(machine_errors))
      self.eigenValues[machine_errors] = 0

    self.eigenValues.sort()  # Sort the eigenValues from small to large

    self.logger.debug('Shape feature class initialized')

[docs]  def getMeshVolumeFeatureValue(self):
    r"""
    **1. Mesh Volume**

    .. math::
      V_i = \displaystyle\frac{Oa_i \cdot (Ob_i \times Oc_i)}{6} \text{ (1)}

      V = \displaystyle\sum^{N_f}_{i=1}{V_i} \text{ (2)}

    The volume of the ROI :math:`V` is calculated from the triangle mesh of the ROI.
    For each face :math:`i` in the mesh, defined by points :math:`a_i, b_i` and :math:`c_i`, the (signed) volume
    :math:`V_f` of the tetrahedron defined by that face and the origin of the image (:math:`O`) is calculated. (1)
    The sign of the volume is determined by the sign of the normal, which must be consistently defined as either facing
    outward or inward of the ROI.

    Then taking the sum of all :math:`V_i`, the total volume of the ROI is obtained (2)

    .. note::
      For more extensive documentation on how the volume is obtained using the surface mesh, see the IBSI document,
      where this feature is defined as ``Volume``.
    """
    return self.Volume


[docs]  def getVoxelVolumeFeatureValue(self):
    r"""
    **2. Voxel Volume**

    .. math::
      V_{voxel} = \displaystyle\sum^{N_v}_{k=1}{V_k}

    The volume of the ROI :math:`V_{voxel}` is approximated by multiplying the number of voxels in the ROI by the volume
    of a single voxel :math:`V_k`. This is a less precise approximation of the volume and is not used in subsequent
    features. This feature does not make use of the mesh and is not used in calculation of other shape features.

    .. note::
      Defined in IBSI as ``Approximate Volume``.
    """
    z, y, x = self.pixelSpacing
    Np = len(self.labelledVoxelCoordinates[0])
    return Np * (z * x * y)


[docs]  def getSurfaceAreaFeatureValue(self):
    r"""
    **3. Surface Area**

    .. math::
      A_i = \frac{1}{2}|\text{a}_i\text{b}_i \times \text{a}_i\text{c}_i| \text{ (1)}

      A = \displaystyle\sum^{N_f}_{i=1}{A_i} \text{ (2)}

    where:

    :math:`\text{a}_i\text{b}_i` and :math:`\text{a}_i\text{c}_i` are edges of the :math:`i^{\text{th}}` triangle in the
    mesh, formed by vertices :math:`\text{a}_i`, :math:`\text{b}_i` and :math:`\text{c}_i`.

    To calculate the surface area, first the surface area :math:`A_i` of each triangle in the mesh is calculated (1).
    The total surface area is then obtained by taking the sum of all calculated sub-areas (2).

    .. note::
      Defined in IBSI as ``Surface Area``.
    """
    return self.SurfaceArea


[docs]  def getSurfaceVolumeRatioFeatureValue(self):
    r"""
    **4. Surface Area to Volume ratio**

    .. math::
      \textit{surface to volume ratio} = \frac{A}{V}

    Here, a lower value indicates a more compact (sphere-like) shape. This feature is not dimensionless, and is
    therefore (partly) dependent on the volume of the ROI.
    """
    return self.SurfaceArea / self.Volume


[docs]  def getSphericityFeatureValue(self):
    r"""
    **5. Sphericity**

    .. math::
      \textit{sphericity} = \frac{\sqrt[3]{36 \pi V^2}}{A}

    Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It is a
    dimensionless measure, independent of scale and orientation. The value range is :math:`0 < sphericity \leq 1`, where
    a value of 1 indicates a perfect sphere (a sphere has the smallest possible surface area for a given volume,
    compared to other solids).

    .. note::
      This feature is correlated to Compactness 1, Compactness 2 and Spherical Disproportion. In the default
      parameter file provided in the ``pyradiomics/examples/exampleSettings`` folder, Compactness 1 and Compactness 2
      are therefore disabled.
    """
    return (36 * numpy.pi * self.Volume ** 2) ** (1.0 / 3.0) / self.SurfaceArea


[docs]  @deprecated
  def getCompactness1FeatureValue(self):
    r"""
    **6. Compactness 1**

    .. math::
      \textit{compactness 1} = \frac{V}{\sqrt{\pi A^3}}

    Similar to Sphericity, Compactness 1 is a measure of how compact the shape of the tumor is relative to a sphere
    (most compact). It is therefore correlated to Sphericity and redundant. It is provided here for completeness.
    The value range is :math:`0 < compactness\ 1 \leq \frac{1}{6 \pi}`, where a value of :math:`\frac{1}{6 \pi}`
    indicates a perfect sphere.

    By definition, :math:`compactness\ 1 = \frac{1}{6 \pi}\sqrt{compactness\ 2} =
    \frac{1}{6 \pi}\sqrt{sphericity^3}`.

    .. note::
      This feature is correlated to Compactness 2, Sphericity and Spherical Disproportion.
      Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
      individual features are specified (enabling 'all' features), but will be enabled when individual features are
      specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
      features.
    """
    return self.Volume / (self.SurfaceArea ** (3.0 / 2.0) * numpy.sqrt(numpy.pi))


[docs]  @deprecated
  def getCompactness2FeatureValue(self):
    r"""
    **7. Compactness 2**

    .. math::
      \textit{compactness 2} = 36 \pi \frac{V^2}{A^3}

    Similar to Sphericity and Compactness 1, Compactness 2 is a measure of how compact the shape of the tumor is
    relative to a sphere (most compact). It is a dimensionless measure, independent of scale and orientation. The value
    range is :math:`0 < compactness\ 2 \leq 1`, where a value of 1 indicates a perfect sphere.

    By definition, :math:`compactness\ 2 = (sphericity)^3`

    .. note::
      This feature is correlated to Compactness 1, Sphericity and Spherical Disproportion.
      Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
      individual features are specified (enabling 'all' features), but will be enabled when individual features are
      specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
      features.
    """
    return (36.0 * numpy.pi) * (self.Volume ** 2.0) / (self.SurfaceArea ** 3.0)


[docs]  @deprecated
  def getSphericalDisproportionFeatureValue(self):
    r"""
    **8. Spherical Disproportion**

    .. math::
      \textit{spherical disproportion} = \frac{A}{4\pi R^2} = \frac{A}{\sqrt[3]{36 \pi V^2}}

    Where :math:`R` is the radius of a sphere with the same volume as the tumor, and equal to
    :math:`\sqrt[3]{\frac{3V}{4\pi}}`.

    Spherical Disproportion is the ratio of the surface area of the tumor region to the surface area of a sphere with
    the same volume as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value range is
    :math:`spherical\ disproportion \geq 1`, with a value of 1 indicating a perfect sphere.

    .. note::
      This feature is correlated to Compactness 2, Compactness2 and Sphericity.
      Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
      individual features are specified (enabling 'all' features), but will be enabled when individual features are
      specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
      features.
    """
    return self.SurfaceArea / (36 * numpy.pi * self.Volume ** 2) ** (1.0 / 3.0)


[docs]  def getMaximum3DDiameterFeatureValue(self):
    r"""
    **9. Maximum 3D diameter**

    Maximum 3D diameter is defined as the largest pairwise Euclidean distance between tumor surface mesh
    vertices.

    Also known as Feret Diameter.
    """
    return self.diameters[3]


[docs]  def getMaximum2DDiameterSliceFeatureValue(self):
    r"""
    **10. Maximum 2D diameter (Slice)**

    Maximum 2D diameter (Slice) is defined as the largest pairwise Euclidean distance between tumor surface mesh
    vertices in the row-column (generally the axial) plane.
    """
    return self.diameters[0]


[docs]  def getMaximum2DDiameterColumnFeatureValue(self):
    r"""
    **11. Maximum 2D diameter (Column)**

    Maximum 2D diameter (Column) is defined as the largest pairwise Euclidean distance between tumor surface mesh
    vertices in the row-slice (usually the coronal) plane.
    """
    return self.diameters[1]


[docs]  def getMaximum2DDiameterRowFeatureValue(self):
    r"""
    **12. Maximum 2D diameter (Row)**

    Maximum 2D diameter (Row) is defined as the largest pairwise Euclidean distance between tumor surface mesh
    vertices in the column-slice (usually the sagittal) plane.
    """
    return self.diameters[2]


[docs]  def getMajorAxisLengthFeatureValue(self):
    r"""
    **13. Major Axis Length**

    .. math::
      \textit{major axis} = 4 \sqrt{\lambda_{major}}

    This feature yield the largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
    principal component :math:`\lambda_{major}`.

    The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[2] < 0:
      self.logger.warning('Major axis eigenvalue negative! (%g)', self.eigenValues[2])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[2]) * 4


[docs]  def getMinorAxisLengthFeatureValue(self):
    r"""
    **14. Minor Axis Length**

    .. math::
      \textit{minor axis} = 4 \sqrt{\lambda_{minor}}

    This feature yield the second-largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
    principal component :math:`\lambda_{minor}`.

    The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[1] < 0:
      self.logger.warning('Minor axis eigenvalue negative! (%g)', self.eigenValues[1])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[1]) * 4


[docs]  def getLeastAxisLengthFeatureValue(self):
    r"""
    **15. Least Axis Length**

    .. math::
      \textit{least axis} = 4 \sqrt{\lambda_{least}}

    This feature yield the smallest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
    principal component :math:`\lambda_{least}`. In case of a 2D segmentation, this value will be 0.

    The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[0] < 0:
      self.logger.warning('Least axis eigenvalue negative! (%g)', self.eigenValues[0])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[0]) * 4


[docs]  def getElongationFeatureValue(self):
    r"""
    **16. Elongation**

    Elongation shows the relationship between the two largest principal components in the ROI shape.
    For computational reasons, this feature is defined as the inverse of true elongation.

    .. math::
      \textit{elongation} = \sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}

    Here, :math:`\lambda_{\text{major}}` and :math:`\lambda_{\text{minor}}` are the lengths of the largest and second
    largest principal component axes. The values range between 1 (where the cross section through the first and second
    largest principal moments is circle-like (non-elongated)) and 0 (where the object is a maximally elongated: i.e. a 1
    dimensional line).

    The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[1] < 0 or self.eigenValues[2] < 0:
      self.logger.warning('Elongation eigenvalue negative! (%g, %g)', self.eigenValues[1], self.eigenValues[2])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[1] / self.eigenValues[2])


[docs]  def getFlatnessFeatureValue(self):
    r"""
    **17. Flatness**

    Flatness shows the relationship between the largest and smallest principal components in the ROI shape.
    For computational reasons, this feature is defined as the inverse of true flatness.

    .. math::
      \textit{flatness} = \sqrt{\frac{\lambda_{least}}{\lambda_{major}}}

    Here, :math:`\lambda_{\text{major}}` and :math:`\lambda_{\text{least}}` are the lengths of the largest and smallest
    principal component axes. The values range between 1 (non-flat, sphere-like) and 0 (a flat object, or single-slice
    segmentation).

    The principal component analysis is performed using the physical coordinates of the voxel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[0] < 0 or self.eigenValues[2] < 0:
      self.logger.warning('Elongation eigenvalue negative! (%g, %g)', self.eigenValues[0], self.eigenValues[2])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[0] / self.eigenValues[2])
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  Source code for radiomics.shape2D

import numpy
import SimpleITK as sitk

from radiomics import base, cShape, deprecated


[docs]class RadiomicsShape2D(base.RadiomicsFeaturesBase):
  r"""
  In this group of features we included descriptors of the two-dimensional size and shape of the ROI. These features
  are independent from the gray level intensity distribution in the ROI and are therefore only calculated on the
  non-derived image and mask.

  Unless otherwise specified, features are derived from the approximated shape defined by the circumference mesh. To
  build this mesh, vertices (points) are first defined as points halfway on an edge between a pixel included in the ROI
  and one outside the ROI. By connecting these vertices a mesh of connected lines is obtained, with each line
  defined by 2 adjacent vertices, which shares each a point with exactly one other line.

  This mesh is generated using an adapted version marching cubes algorithm. In this algorithm, a 2x2 square is moved
  through the mask space (2d). For each position, the corners of the square are then marked 'segmented' (1) or
  'not segmented' (0). Treating the corners as specific bits in a binary number, a unique square-index is obtained
  (0-15). This index is then used to determine which lines are present in the square, which are defined in a lookup
  table.

  These lines are defined in such a way, that the normal of the triangle defined by these points and the origin
  is always oriented in the a consistent direction. This results in signed values for the surface area of each triangle,
  so that when summed, the superfluous (postive) area included by triangles partly inside and outside the ROI is
  perfectly cancelled out by the (negative) area of triangles entirely outside the ROI.

  Let:

  - :math:`N_p` represent the number of pixels included in the ROI
  - :math:`N_f` represent the number of lines defining the circumference (perimeter) Mesh.
  - :math:`A` the surface area of the mesh in mm\ :sup:`2`, calculated by :py:func:`getMeshSurfaceFeatureValue`
  - :math:`P` the perimeter of the mesh in mm, calculated by :py:func:`getPerimeterFeatureValue`

  .. note::
    This class can **only** be calculated for truly 2D masks. To ensure correct processing, it is required that
    ``force2D`` is set to ``True`` and ``force2Ddimension`` to the dimension that is out-of plane (e.g. 0 (z-axis) for
    an axial slice). Furthermore, this dimension is required to have size 1. If not set correctly, a ValueError is
    raised.

  References:

  - Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput
    Graph `Internet <http://portal.acm.org/citation.cfm?doid=37402.37422>`_. 1987;21:163-9.
  """

  def __init__(self, inputImage, inputMask, **kwargs):
    super(RadiomicsShape2D, self).__init__(inputImage, inputMask, **kwargs)

  def _initVoxelBasedCalculation(self):
    raise NotImplementedError('Shape features are not available in pixel-based mode')

  def _initSegmentBasedCalculation(self):
    self.maskArray = (sitk.GetArrayFromImage(self.inputMask) == self.label)  # boolean array

    Nd = self.inputMask.GetDimension()
    if Nd == 3:
      if not self.settings.get('force2D', False):
        raise ValueError('Shape2D is can only be calculated when input is 2D or 3D with `force2D=True`')

      force2DDimension = self.settings.get('force2Ddimension', 0)
      axes = [0, 1, 2]
      axes.remove(force2DDimension)

      self.pixelSpacing = numpy.array(self.inputImage.GetSpacing()[::-1])[(axes,)]

      if self.maskArray.shape[force2DDimension] > 1:
        raise ValueError('Size of the mask in dimension %i is more than 1, cannot compute 2D shape')

      # Drop the 2D axis, ensuring the input is truly 2D
      self.maskArray = numpy.squeeze(self.maskArray, axis=force2DDimension)
    elif Nd == 2:
      self.pixelSpacing = numpy.array(self.inputImage.GetSpacing()[::-1])
    else:
      raise ValueError('Shape2D is can only be calculated when input is 2D or 3D with `force2D=True`')

    # Pad maskArray to prevent index-out-of-range errors
    self.logger.debug('Padding the mask with 0s')
    self.maskArray = numpy.pad(self.maskArray, pad_width=1, mode='constant', constant_values=0)

    self.labelledPixelCoordinates = numpy.where(self.maskArray != 0)

    self.logger.debug('Pre-calculate surface, perimeter, diameter and eigenvalues')

    # Volume, Surface Area and eigenvalues are pre-calculated

    # Compute Surface Area and volume
    self.Perimeter, self.Surface, self.Diameter = cShape.calculate_coefficients2D(self.maskArray, self.pixelSpacing)

    # Compute eigenvalues and -vectors
    Np = len(self.labelledPixelCoordinates[0])
    coordinates = numpy.array(self.labelledPixelCoordinates, dtype='int').transpose((1, 0))  # Transpose equals zip(*a)
    physicalCoordinates = coordinates * self.pixelSpacing[None, :]
    physicalCoordinates -= numpy.mean(physicalCoordinates, axis=0)  # Centered at 0
    physicalCoordinates /= numpy.sqrt(Np)
    covariance = numpy.dot(physicalCoordinates.T.copy(), physicalCoordinates)
    self.eigenValues = numpy.linalg.eigvals(covariance)

    # Correct machine precision errors causing very small negative eigen values in case of some 2D segmentations
    machine_errors = numpy.bitwise_and(self.eigenValues < 0, self.eigenValues > -1e-10)
    if numpy.sum(machine_errors) > 0:
      self.logger.warning('Encountered %d eigenvalues < 0 and > -1e-10, rounding to 0', numpy.sum(machine_errors))
      self.eigenValues[machine_errors] = 0

    self.eigenValues.sort()  # Sort the eigenValues from small to large

    self.logger.debug('Shape feature class initialized')

[docs]  def getMeshSurfaceFeatureValue(self):
    r"""
    **1. Mesh Surface**

    .. math::
      A_i = \frac{1}{2}\text{Oa}_i \times \text{Ob}_i \text{ (1)}

      A = \displaystyle\sum^{N_f}_{i=1}{A_i} \text{ (2)}

    where:

    :math:`\text{O}_i\text{a}_i` and :math:`\text{O}_i\text{b}_i` are edges of the :math:`i^{\text{th}}` triangle in the
    mesh, formed by vertices :math:`\text{a}_i`, :math:`\text{b}_i` of the perimiter and the origin :math:`\text{O}`.

    To calculate the surface area, first the signed surface area :math:`A_i` of each triangle in the mesh is calculated
    (1). The total surface area is then obtained by taking the sum of all calculated sub-areas (2), where the sign will
    ensure correct surface area, as the negative area of triangles outside the ROI will cancel out the surplus area
    included by triangles partly inside and partly outside the ROI.
    """
    return self.Surface


[docs]  def getPixelSurfaceFeatureValue(self):
    r"""
    **2. Pixel Surface**

    .. math::
      A_{pixel} = \displaystyle\sum^{N_v}_{k=1}{A_k}

    The surface area of the ROI :math:`A_{pixel}` is approximated by multiplying the number of pixels in the ROI by the
    surface area of a single pixel :math:`A_k`. This is a less precise approximation of the surface area.
    This feature does not make use of the mesh and is not used in calculation of other 2D shape features.
    """
    y, x = self.pixelSpacing
    Np = len(self.labelledPixelCoordinates[0])
    return Np * (x * y)


[docs]  def getPerimeterFeatureValue(self):
    r"""
    **3. Perimeter**

    .. math::
      P_i = \sqrt{(\text{a}_i-\text{b}_i)^2} \text{ (1)}

      P = \displaystyle\sum^{N_f}_{i=1}{P_i} \text{ (2)}

    where:

    :math:`\text{a}_i` and :math:`\text{b}_i` are vertices of the :math:`i^{\text{th}}` line in the
    perimeter mesh.

    To calculate the perimeter, first the perimeter :math:`A_i` of each line in the mesh circumference is calculated
    (1). The total perimeter is then obtained by taking the sum of all calculated sub-areas (2).

    """
    return self.Perimeter


[docs]  def getPerimeterSurfaceRatioFeatureValue(self):
    r"""
    **4. Perimeter to Surface ratio**

    .. math::
      \textit{perimeter to surface ratio} = \frac{P}{A}

    Here, a lower value indicates a more compact (circle-like) shape. This feature is not dimensionless, and is
    therefore (partly) dependent on the surface area of the ROI.
    """
    return self.Perimeter / self.Surface


[docs]  def getSphericityFeatureValue(self):
    r"""
    **5. Sphericity**

    .. math::
      \textit{sphericity} = \frac{2\pi R}{P} = \frac{2\sqrt{\pi A}}{P}

    Where :math:`R` is the radius of a circle with the same surface as the ROI, and equal to
    :math:`\sqrt{\frac{A}{\pi}}`.

    Sphericity is the ratio of the perimeter of the tumor region to the perimeter of a circle with
    the same surface area as the tumor region and therefore a measure of the roundness of the shape of the tumor region
    relative to a circle. It is a dimensionless measure, independent of scale and orientation. The value range is
    :math:`0 < sphericity \leq 1`, where a value of 1 indicates a perfect circle (a circle has the smallest possible
    perimeter for a given surface area, compared to other shapes).

    .. note::
      This feature is correlated to Spherical Disproportion. Therefore, only this feature is enabled by default.
    """
    return (2 * numpy.sqrt(numpy.pi * self.Surface)) / self.Perimeter


[docs]  @deprecated
  def getSphericalDisproportionFeatureValue(self):
    r"""
    **6. Spherical Disproportion**

    .. math::
      \textit{spherical disproportion} = \frac{P}{2\sqrt{\pi A}}

    Spherical Disproportion is the ratio of the perimeter of the tumor region to the perimeter of a circle with
    the same surface area as the tumor region, and by definition, the inverse of Sphericity. Therefore, the value range
    is :math:`spherical\ disproportion \geq 1`, with a value of 1 indicating a perfect sphere.

    .. note::
      This feature is correlated to Sphericity.
      Therefore, this feature is marked, so it is not enabled by default (i.e. this feature will not be enabled if no
      individual features are specified (enabling 'all' features), but will be enabled when individual features are
      specified, including this feature). To include this feature in the extraction, specify it by name in the enabled
      features.
    """
    return 1.0 / self.getSphericityFeatureValue()


[docs]  def getMaximumDiameterFeatureValue(self):
    r"""
    **7. Maximum 2D diameter**

    Maximum diameter is defined as the largest pairwise Euclidean distance between tumor surface mesh
    vertices.
    """
    return self.Diameter


[docs]  def getMajorAxisLengthFeatureValue(self):
    r"""
    **8. Major Axis Length**

    .. math::
      \textit{major axis} = 4 \sqrt{\lambda_{major}}

    This feature yield the largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
    principal component :math:`\lambda_{major}`.

    The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[1] < 0:
      self.logger.warning('Major axis eigenvalue negative! (%g)', self.eigenValues[1])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[1]) * 4


[docs]  def getMinorAxisLengthFeatureValue(self):
    r"""
    **9. Minor Axis Length**

    .. math::
      \textit{minor axis} = 4 \sqrt{\lambda_{minor}}

    This feature yield the second-largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest
    principal component :math:`\lambda_{minor}`.

    The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[0] < 0:
      self.logger.warning('Minor axis eigenvalue negative! (%g)', self.eigenValues[0])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[0]) * 4


[docs]  def getElongationFeatureValue(self):
    r"""
    **10. Elongation**

    Elongation shows the relationship between the two largest principal components in the ROI shape.
    For computational reasons, this feature is defined as the inverse of true elongation.

    .. math::
      \textit{elongation} = \sqrt{\frac{\lambda_{minor}}{\lambda_{major}}}

    Here, :math:`\lambda_{\text{major}}` and :math:`\lambda_{\text{minor}}` are the lengths of the largest and second
    largest principal component axes. The values range between 1 (where the cross section through the first and second
    largest principal moments is circle-like (non-elongated)) and 0 (where the object is a maximally elongated: i.e. a 1
    dimensional line).

    The principal component analysis is performed using the physical coordinates of the pixel centers defining the ROI.
    It therefore takes spacing into account, but does not make use of the shape mesh.
    """
    if self.eigenValues[0] < 0 or self.eigenValues[1] < 0:
      self.logger.warning('Elongation eigenvalue negative! (%g, %g)', self.eigenValues[0], self.eigenValues[1])
      return numpy.nan
    return numpy.sqrt(self.eigenValues[0] / self.eigenValues[1])
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