
pyradiomics Documentation
Release 0.0.1

pyradiomics community

Feb 15, 2017

Table of Contents

1 Feature Classes 3

2 Filter Classes 5

3 Supporting reproducible extraction 7

4 Citation 9

5 3rd-party packages used in pyradiomics 11

6 Installation 13
6.1 Installation . 13
6.2 Usage . 14
6.3 radiomics package . 15

7 Pyradiomics Indices and Tables 41

8 License 43

Python Module Index 45

i

ii

pyradiomics Documentation, Release 0.0.1

This is an open-source python package for the extraction of Radiomics features from 2D and 3D images and binary
masks.

Image loading and preprocessing (e.g. resampling and cropping) are first done using SimpleITK. Then, loaded data
are converted into numpy arrays for further calculation using feature classes outlined below.

Table of Contents 1

pyradiomics Documentation, Release 0.0.1

2 Table of Contents

CHAPTER 1

Feature Classes

Currently supports the following feature classes:

• First Order Statistics

• Shape-based

• Gray Level Cooccurence Matrix (GLCM)

• Gray Level Run Length Matrix (GLRLM)

• Gray Level Size Zone Matrix (GLSZM)

3

https://en.wikipedia.org/wiki/Co-occurrence_matrix
http://www.insight-journal.org/browse/publication/231
https://en.wikipedia.org/wiki/Gray_level_size_zone_matrix

pyradiomics Documentation, Release 0.0.1

4 Chapter 1. Feature Classes

CHAPTER 2

Filter Classes

Aside from the feature classes, there are also some built-in optional filters:

• Laplacian of Gaussian (LoG, based on SimpleITK functionality)

• Wavelet (using the PyWavelets package)

• Square

• Square Root

• Logarithm

• Exponential

Most of the provided features and filters are based on methods described in the following publications:

HJWL Aerts, ER Velazquez, RTH Leijenaar, et al., “Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach”, vol. 5, Nat Communication, 2014. Available here.

Specifically, the formulation of the individual feature calculation is covered in this supplement

5

http://www.nature.com/ncomms/2014/140603/ncomms5006/full/ncomms5006.html
http://www.nature.com/ncomms/2014/140603/ncomms5006/extref/ncomms5006-s1.pdf

pyradiomics Documentation, Release 0.0.1

6 Chapter 2. Filter Classes

CHAPTER 3

Supporting reproducible extraction

Aside from calculating features, the pyradiomics package includes provenance information in the output. This infor-
mation contains information on used image and mask, as well as applied settings and filters, thereby enabling fully
reproducible feature extraction.

7

pyradiomics Documentation, Release 0.0.1

8 Chapter 3. Supporting reproducible extraction

CHAPTER 4

Citation

If you publish any work which uses this package, please cite the following publication:

Joost J.M. van Griethuysen et al, “Computational Radiomics System to Decode the Radiographic Phenotype”; Sub-
mitted

9

pyradiomics Documentation, Release 0.0.1

10 Chapter 4. Citation

CHAPTER 5

3rd-party packages used in pyradiomics

• SimpleITK

• numpy

• PyWavelets (Wavelet filter)

• pykwalify (Enabling yaml parameters file checking)

• tqdm (Progressbar)

• sphinx (Generating documentation)

• sphinx_rtd_theme (Template for documentation)

• nose-parameterized (Testing)

11

pyradiomics Documentation, Release 0.0.1

12 Chapter 5. 3rd-party packages used in pyradiomics

CHAPTER 6

Installation

• Clone the repository

– git clone git://github.com/Radiomics/pyradiomics

• Install on your system, with prerequisites:

– cd pyradiomics

– sudo python -m pip install -r requirements.txt

– sudo python setup.py install

• For more detailed installation instructions see Installation Details

6.1 Installation

6.1.1 Get the code

• Ensure you have the version control system git installed on your machine.

• Ensure that you have python installed on your machine, at least version 2.7.

• Clone the repository:

– git clone git://github.com/Radiomics/pyradiomics

6.1.2 Installation on your system

• For unix like systems (MacOSX, linux):

– cd pyradiomics

– sudo python setup.py install

13

pyradiomics Documentation, Release 0.0.1

– If you don’t have sudo/admin rights on your machine, you need to locally install numpy, nose, tqdm,
PyWavelets, SimpleITK. In a bash shell:

pip install --user --upgrade pip
export PATH=$HOME/.local/bin:$PATH
pip install --user numpy
pip install --user nose
pip install --user nose-parameterized
pip install --user tqdm
export PYTHONPATH=$HOME/.local/lib64/python2.7/site-packages
git clone https://github.com/nigma/pywt.git && cd pywt && python setup.py
→˓install --prefix=$HOME/.local && cd ..
pip install --user SimpleITK

* If the installation of SimpleITK fails (newer versions not available on the default servers, you can get
it manually from sourceforge

· For linux:

wget 'https://sourceforge.net/projects/simpleitk/files/SimpleITK/0.10.
→˓0/Python/SimpleITK-0.10.0-1-cp27-cp27m-manylinux1_x86_64.whl'
pip install --user 'SimpleITK-0.10.0-1-cp27-cp27m-manylinux1_x86_64.whl
→˓'

· For Mac:

wget 'https://sourceforge.net/projects/simpleitk/files/SimpleITK/0.10.
→˓0/Python/SimpleITK-0.10.0-cp27-cp27m-macosx_10_6_intel.whl'
pip install --user 'SimpleITK-0.10.0-cp27-cp27m-macosx_10_6_intel.whl'

6.2 Usage

6.2.1 Example

• Run the helloRadiomics example, using sample data provided in pyradiomics/data:

– python bin/helloRadiomics.py

6.2.2 Interactive Use

• Add pyradiomics to the environment variable PYTHONPATH:

– setenv PYTHONPATH /path/to/pyradiomics/radiomics

• Start the python interactive session:

– python

• Import the necessary classes:

from radiomics import firstorder, glcm, imageoperations, shape, glrlm, glszm
import SimpleITK as sitk
import sys, os

• Set up a data directory variable:

14 Chapter 6. Installation

https://sourceforge.net/projects/simpleitk/files/SimpleITK/

pyradiomics Documentation, Release 0.0.1

dataDir = '/path/to/pyradiomics/data'

• You will find sample data files brain1_image.nrrd and brain1_label.nrrd in that directory.

• Use SimpleITK to read a the brain image and mask:

imageName = str(dataDir + os.path.sep + 'brain1_image.nrrd')
maskName = str(dataDir + os.path.sep + 'brain1_label.nrrd')
image = sitk.ReadImage(imageName)
mask = sitk.ReadImage(maskName)

• Calculate the first order features:

firstOrderFeatures = firstorder.RadiomicsFirstOrder(image,mask)
firstOrderFeatures.calculateFeatures()
for (key,val) in firstOrderFeatures.featureValues.iteritems():
print ' ',key,':',val

• See the radomics package for more features that you can calculate.

6.3 radiomics package

6.3.1 Submodules

6.3.2 radiomics.base module

class radiomics.base.RadiomicsFeaturesBase(inputImage, inputMask, **kwargs)
Bases: object

enableFeatureByName(featureName, enable=True)

enableAllFeatures()

disableAllFeatures()

classmethod getFeatureNames(c)

calculateFeatures()

6.3.3 radiomics.featureextractor module

class radiomics.featureextractor.RadiomicsFeaturesExtractor(*args, **kwargs)
Wrapper class for calculation of a radiomics signature. At and after initialisation various settings can be used
to customize the resultant signature. This includes which classes and features to use, as well as what should be
done in terms of preprocessing the image and what images (original and/or filtered) should be used as input.

Then a call to computeSignature generates the radiomics signature specified by these settings for the passed
image and labelmap combination. This function can be called repeatedly in a batch process to calculate the
radiomics signature for all image and labelmap combinations.

It initialisation, a parameters file can be provided containing all necessary settings. This is done by passing the
location of the file as the single argument in the initialization call, without specifying it as a keyword argument.
If such a file location is provided, any additional kwargs are ignored. Alternatively, at initialisation, the following
general settings can be specified in kwargs:

•verbose [True]: Boolean, set to False to disable status update printing.

6.3. radiomics package 15

pyradiomics Documentation, Release 0.0.1

•binWidth [25]: Float, size of the bins when making a histogram and for discretization of the image gray
level.

•resampledPixelSpacing [None]: List of 3 floats, sets the size of the voxel in (x, y, z) plane when resampling.

•interpolator [sitkBSpline]: Simple ITK constant or string name thereof, sets interpolator to use for resam-
pling. Enumerated value, possible values:

–sitkNearestNeighbor

–sitkLinear

–sitkBSpline

–sitkGaussian

–sitkLabelGaussian

–sitkHammingWindowedSinc

–sitkCosineWindowedSinc

–sitkWelchWindowedSinc

–sitkLanczosWindowedSinc

–sitkBlackmanWindowedSinc

•padDistance [5]: Integer, set the number of voxels pad cropped tumor volume with during resampling.
Padding occurs in new feature space and is done on all faces, i.e. size increases in x, y and z direction by
2*padDistance. Padding is needed for some filters (e.g. LoG). After application of filters image is cropped
again without padding. Value of padded voxels are set to original gray level intensity, padding does not
exceed original image boundaries.

N.B. Resampling is disabled when either resampledPixelSpacing or interpolator is set to None

In addition to these general settings, filter or featureclass specific settings can be defined here also. For more
information on possible settings, see the respective filters and feature classes.

By default, all features in all feature classes are enabled. By default, only original input image is enabled N.B.
for log, the sigma is set to range 0.5-5.0, step size 0.5

addProvenance(provenance_on=True)
Enable or disable reporting of settings used for calculated filters. By default, settings used are
added to the dictionary of calculated features as {“settings_<filter>”:<settings>} To disable this, call
addProvenance(False)

loadParams(paramsFile)
Parse specified parameters file and use it to update settings in kwargs, enabled feature(Classes) and input
images: - kwarg settings not specified in parameters are set to their default value. - enabledFeatures are
replaced by those in parameters. If no featureClass parameters were specified, all

featureClasses and features are enabled.

•inputImages are replaced by those in parameters. If no inputImage parameters were specified, only
original image is used for feature extraction, with no additional custom settings

The paramsFile is written according to the YAML-convention (www.yaml.org) and is checked by the code
for consistency. Only one yaml document per file is allowed. Settings must be grouped by setting type as
mentioned above are reflected in the structure of the document as follows:

16 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

<Setting Type>:
<Setting Name>: <value>
...

<Setting Type>:
...

Blank lines may be inserted to increase readability, the are ignored by the parser. Additional comments
are also possible, these are preceded by an ‘#’ and can be inserted on a blank line, or on a line containing
settings:

This is a line containing only comments
setting: # This is a comment placed after the declaration of the 'setting'
→˓group.

Any keyword, such as a setting type or setting name may only be mentioned once. Multiple instances do
not raise an error, but only the last encountered one is used.

The three setting types are named as follows:

•setting: Setting to use for preprocessing and class specific settings (kwargs arguments). if no
<value> is specified, the value for this setting is set to None.

•featureClass: Feature class to enable, <value> is list of strings representing enabled features. If no
<value> is specified or <value> is an empty list (‘[]’), all features for this class are enabled.

•inputImage: input image to calculate features on. <value> is custom kwarg settings (dictionary). if
<value> is an empty dictionary (‘{}’), no custom settings are added for this input image.

If supplied params file does not match the requirements, a pykwalify error is raised.

enableAllInputImages()
Enable all possible input images without any custom settings.

disableAllInputImages()
Disable all input images.

enableInputImageByName(inputImage, enabled=True, customArgs=None)
Enable or disable specified input image. If enabling input image, optional custom settings can be specified
in customArgs.

Current possible filters are:

•original: No filter applied

•wavelet: Wavelet filtering, yields 8 decompositions per level (all possible combinations of applying
either a High or a Low pass filter in each of the three dimensions.

•log: Laplacian of Gaussian filter, edge enhancement filter. Emphasizes areas of gray level change,
where sigma defines how coarse the emphasised texture should be. A low sigma emphasis on fine
textures (change over a short distance), where a high sigma value emphasises coarse textures (gray
level change over a large distance)

•square: Takes the square of the image intensities and linearly scales them back to the original range.
Negative values in the original image will be made negative again after application of filter.

•squareroot: Takes the square root of the absolute image intensities and scales them back to original
range. Negative values in the original image will be made negative again after application of filter.

•logarithm: Takes the logarithm of the absolute intensity + 1. Values are scaled to original range and
negative original values are made negative again after application of filter.

6.3. radiomics package 17

pyradiomics Documentation, Release 0.0.1

•exponential: Takes the the exponential, where filtered intensity is e^(absolute intensity). Values are
scaled to original range and negative original values are made negative again after application of filter.

For the mathmetical formulas of square, squareroot, logarithm and exponential, see their respective
functions in imageoperations (applySquare(), applySquareRoot(), applyLogarithm() and
applyExponential(), respectively).

enableInputImages(**inputImages)
Enable input images, with optionally custom settings, which are applied to the respective input image.
Settings specified here override those in kwargs. The following settings are not customizable:

•interpolator

•resampledPixelSpacing

•padDistance

Updates current settings: If necessary, enables input image. Always overrides custom settings specified
for input images passed in inputImages. To disable input images, use enableInputImageByName or dis-
ableAllInputImages instead.

Parameters inputImages – dictionary, key is imagetype (original, wavelet or log) and value
is custom settings (dictionary)

enableAllFeatures()
Enable all classes and all features.

disableAllFeatures()
Disable all classes.

enableFeatureClassByName(featureClass, enabled=True)
Enable or disable all features in given class.

enableFeaturesByName(**enabledFeatures)
Specify which features to enable. Key is feature class name, value is a list of enabled feature names.

To enable all features for a class, provide the class name with an empty list or None as value. Settings for
feature classes specified in enabledFeatures.keys are updated, settings for feature classes not yet present
in enabledFeatures.keys are added. To disable the entire class, use disableAllFeatures or enableFeature-
ClassByName instead.

execute(imageFilepath, maskFilepath, label=None)
Compute radiomics signature for provide image and mask combination. First, image and mask are loaded
and resampled if necessary. Next shape features are calculated on a cropped (no padding) version of
the original image. Then other featureclasses are calculated on using all specified filters in inputImages.
Images are cropped to tumor mask (no padding) after application of filter and before being passed to the
feature class. Finally, a dictionary containing all calculated features is returned.

Parameters

• imageFilepath – SimpleITK Image, or string pointing to image file location

• maskFilepath – SimpleITK Image, or string pointing to labelmap file location

• label – Integer, value of the label for which to extract features. If not specified, last
specified label is used. Default label is 1.

Returns dictionary containing calculated signature (“<fil-
ter>_<featureClass>_<featureName>”:value).

loadImage(ImageFilePath, MaskFilePath)
Preprocess the image and labelmap. If ImageFilePath is a string, it is loaded as SimpleITK Image and

18 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

assigned to image, if it already is a SimpleITK Image, it is just assigned to image. All other cases are
ignored (nothing calculated). Equal approach is used for assignment of mask using MaskFilePath.

If resampling is enabled, both image and mask are resampled and cropped to the tumormask (with addi-
tional padding as specified in padDistance) after assignment of image and mask.

getProvenance(imageFilepath, maskFilepath, mask)
Generates provenance information for reproducibility. Takes the original image & mask filepath, as well
as the resampled mask which is passed to the feature classes. Returns a dictionary with keynames coded
as “general_info_<item>”. For more information on generated items, see generalinfo

computeFeatures(image, mask, inputImageName, **kwargs)
Compute signature using image, mask, **kwargs settings This function computes the signature for just the
passed image (original or filtered), does not preprocess or apply a filter to the passed image. Features /
Classes to use for calculation of signature are defined in self.enabledFeatures. see also enableFeaturesBy-
Name.

generate_original(image, mask, **kwargs)
No filter is applied.

Returns Yields original image, mask, ‘original’ and kwargs

generate_log(image, mask, **kwargs)
Apply Laplacian of Gaussian filter to input image and compute signature for each filtered image.

Following settings are possible:

•sigma: List of floats or integers, must be greater than 0. Sigma values to use for the filter (determines
coarseness).

N.B. Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function
will return an empty dictionary.

Returned filter name reflects LoG settings: log-sigma-<sigmaValue>-3D-<featureName>.

Returns Yields log filtered image, mask, filter name and kwargs

generate_wavelet(image, mask, **kwargs)
Apply wavelet filter to image and compute signature for each filtered image.

Following settings are possible:

•start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions
from which a signature is calculated

•level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.

•wavelet [”coif1”]: string, type of wavelet decomposition. Enumerated value, validated against pos-
sible values present in the pyWavelet.wavelist(). Current possible values (pywavelet version
0.4.0) (where an aditional number is needed, range of values is indicated in []):

–haar

–dmey

–sym[2-20]

–db[1-20]

–coif[1-5]

–bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

–rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]

6.3. radiomics package 19

pyradiomics Documentation, Release 0.0.1

Returned filter name reflects wavelet type: wavelet[level]-<decompositionName>-<featureName>

N.B. only levels greater than the first level are entered into the name.

Returns Yields wavelet filtered image, mask, filter name and kwargs

generate_square(image, mask, **kwargs)
Computes the square of the image intensities.

Resulting values are rescaled on the range of the initial original image.

Returns Yields square filtered image, mask, ‘square’ and kwargs

generate_squareroot(image, mask, **kwargs)
Computes the square root of the absolute value of image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.

Returns Yields square root filtered image, mask, ‘squareroot’ and kwargs

generate_logarithm(image, mask, **kwargs)
Computes the logarithm of the absolute value of the original image + 1.

Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.

Returns Yields logarithm filtered image, mask, ‘logarithm’ and kwargs

generate_exponential(image, mask, **kwargs)
Computes the exponential of the original image.

Resulting values are rescaled on the range of the initial original image.

Returns Yields exponential filtered image, mask, ‘exponential’ and kwargs

getInputImageTypes()
Returns a list of possible input image types.

classmethod getFeatureClasses()
Iterates over all modules of the radiomics package using pkgutil and subsequently imports those modules.

Return a dictionary of all modules containing featureClasses, with modulename as key, abstract class
object of the featureClass as value. Assumes only one featureClass per module

This is achieved by inspect.getmembers. Modules are added if it contains a memeber that
is a class, with name starting with ‘Radiomics’ and is inherited from radiomics.base.
RadiomicsFeaturesBase.

getFeatureClassNames()

getFeatureNames(featureClassName)
Returns a list of all possible features in provided featureClass

6.3.4 radiomics.generalinfo module

class radiomics.generalinfo.GeneralInfo(imagePath, maskPath, resampledMask, kwargs, in-
putImages)

execute()
Calculate and return a dictionary containing all general info items. Format is <info_item>:<value>, where
any ‘,’ in <value> are replaced by ‘;’ to prevent column alignment errors in csv formatted output.

20 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

getBoundingBoxValue()
Calculate and return the boundingbox extracted using the specified label. Elements 0, 1 and 2 are the x, y
and z coordinates of the lower bound, respectively. Elements 3, 4 and 5 are the size of the bounding box
in x, y and z direction, respectively.

Values are based on the resampledMask.

getGeneralSettingsValue()
Return a string representation of the settings contained in kwargs. Format is {<settings_name>:<value>,
...}.

getImageHashValue()
Returns the sha1 hash of the image. This enables checking whether two images are the same, regardless
of the file location.

If the reading of the image fails, an empty string is returned.

getImageSpacingValue()
Returns the original spacing of the image.

If the reading of the image fails, an empty string is returned.

getInputImagesValue()
Return a string representation of the enabled filters and any custom settings for the filter. Format is {<fil-
ter_name>:{<setting_name>:<value>, ...}, ...}.

getMaskHashValue()
Returns the sha1 hash of the mask. This enables checking whether two masks are the same, regardless of
the file location.

If the reading of the mask fails, an empty string is returned. Uses the original mask, specified in maskPath.

getVersionValue()
Return the current version of this package.

getVolumeNumValue()
Calculate and return the number of zones within the mask for the specified label. A zone is defined as
a group of connected neighbours that are segmented with the specified label, and a voxel is considered a
neighbour using 26-connectedness for 3D and 8-connectedness for 2D.

Values are based on the resampledMask.

getVoxelNumValue()
Calculate and return the number of voxels that have been segmented using the specified label.

Values are based on the resampledMask.

6.3.5 radiomics.firstorder module

class radiomics.firstorder.RadiomicsFirstOrder(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

First-order statistics describe the distribution of voxel intensities within the image region defined by the mask
through commonly used and basic metrics.

Let:

X denote the three dimensional image matrix with 𝑁 voxels

P(𝑖) the first order histogram with 𝑁𝑙 discrete intensity levels, where 𝑙 is defined by the number of levels is
calculated based on the binWidth parameter of the constructor.

6.3. radiomics package 21

pyradiomics Documentation, Release 0.0.1

𝑝(𝑖) be the normalized first order histogram and equal to P(𝑖)∑︀
P(𝑖)

Following addiotional settings are possible:

•voxelArrayShift [2000]: This amount is added to the gray level intensity in Energy, Total Energy and RMS,
this is to prevent negative values from occuring when using CT data.

getEnergyFeatureValue()
Calculate the Energy of the image array.

𝑒𝑛𝑒𝑟𝑔𝑦 =

𝑁∑︁
𝑖=1

X(𝑖)2

Energy is a measure of the magnitude of voxel values in an image. A larger values implies a greater sum
of the squares of these values.

getTotalEnergyFeatureValue()
Calculate the Total Energy of the image array.

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑉𝑣𝑜𝑥𝑒𝑙

𝑁∑︁
𝑖=1

X(𝑖)2

Total Energy is the value of Energy feature scaled by the volume of the voxel in cubic mm.

getEntropyFeatureValue()
Calculate the Entropy of the image array.

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁𝑙∑︁
𝑖=1

𝑝(𝑖) log2

(︀
𝑝(𝑖) + 𝜖

)︀
Entropy specifies the uncertainty/randomness in the image values. It measures the average amount of
information required to encode the image values.

getMinimumFeatureValue()
Calculate the Minimum Value in the image array.

get10PercentileFeatureValue()
Calculate the 10th percentile in the image array.

get90PercentileFeatureValue()
Calculate the 90th percentile in the image array.

getMaximumFeatureValue()
Calculate the Maximum Value in the image array.

getMeanFeatureValue()
Calculate the Mean Value for the image array.

𝑚𝑒𝑎𝑛 = 1
𝑁

𝑁∑︁
𝑖=1

X(𝑖)

getMedianFeatureValue()
Calculate the Median Value for the image array.

getInterquartileRangeFeatureValue()
Calculate the interquartile range of the image array.

𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 = P75 − P25, where P25 and P75 are the 25th and 75th percentile of the image array,
respectively.

getRangeFeatureValue()
Calculate the Range of Values in the image array.

22 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

𝑟𝑎𝑛𝑔𝑒 = max(X) − min(X)

getMeanAbsoluteDeviationFeatureValue()
Calculate the Mean Absolute Deviation for the image array.

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1
𝑁

𝑁∑︁
𝑖=1

|X(𝑖) − �̄�|

Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value of the image
array.

getRobustMeanAbsoluteDeviationFeatureValue()
Calculate the Robust Mean Absolute Deviation for the image array.

𝑟𝑜𝑏𝑢𝑠𝑡 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1
𝑁10−90

𝑁10−90∑︁
𝑖=1

|X10−90(𝑖) − �̄�10−90|

Robust Mean Absolute Deviation is the mean distance of all intensity values from the Mean Value calcu-
lated on the subset of image array with gray levels in between, or equal to the 10th and 90th percentile.

getRootMeanSquaredFeatureValue()
Calculate the Root Mean Squared of the image array.

𝑅𝑀𝑆 =
√︁

1
𝑁

∑︀𝑁
𝑖=1 X(𝑖)2

RMS is the square-root of the mean of all the squared intensity values. It is another measure of the
magnitude of the image values.

getStandardDeviationFeatureValue()
Calculate the Standard Deviation of the image array.

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)2

Standard Deviation measures the amount of variation or dispersion from the Mean Value.

getSkewnessFeatureValue(axis=0)
Calculate the Skewness of the image array.

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝜇3

𝜎3
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)3(︂√︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)2

)︂3

Where 𝜇3 is the 3rd central moment.

Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on
where the tail is elongated and the mass of the distribution is concentrated, this value can be positive or
negative.

Related links:

https://en.wikipedia.org/wiki/Skewness

getKurtosisFeatureValue(axis=0)
Calculate the Kurtosis of the image array.

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝜇4

𝜎4
=

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)4(︁

1
𝑁

∑︀𝑁
𝑖=1 (X(𝑖) − �̄�)2

)︁2

Where 𝜇4 is the 4th central moment.

6.3. radiomics package 23

https://en.wikipedia.org/wiki/Skewness

pyradiomics Documentation, Release 0.0.1

Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image ROI. A higher kurtosis
implies that the mass of the distribution is concentrated towards the tail(s) rather than towards the mean.
A lower kurtosis implies the reverse: that the mass of the distribution is concentrated towards a spike near
the Mean value.

Related links:

https://en.wikipedia.org/wiki/Kurtosis

getVarianceFeatureValue()
Calculate the Variance in the image array.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 = 1
𝑁

𝑁∑︁
𝑖=1

(X(𝑖) − �̄�)2

Variance is the the mean of the squared distances of each intensity value from the Mean value. This is a
measure of the spread of the distribution about the mean.

getUniformityFeatureValue()
Calculate the Uniformity of the image array.

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =

𝑁𝑙∑︁
𝑖=1

𝑝(𝑖)2

Uniformity is a measure of the sum of the squares of each intensity value. This is a measure of the
heterogeneity of the image array, where a greater uniformity implies a greater heterogeneity or a greater
range of discrete intensity values.

6.3.6 radiomics.glcm module

class radiomics.glcm.RadiomicsGLCM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Co-occurrence Matrix (GLCM) of size 𝑁𝑔 × 𝑁𝑔 describes the second-order joint probability
function of an image region constrained by the mask and is defined as P(𝑖, 𝑗|𝛿, 𝛼). The (𝑖, 𝑗)th element of this
matrix represents the number of times the combination of levels 𝑖 and 𝑗 occur in two pixels in the image, that
are separated by a distance of 𝛿 pixels in direction 𝛼, and 𝑁𝑔 is the number of discrete gray level intensities.
The distance 𝛿 from the center voxel is defined as the distance according to the infinity norm. For 𝛿 = 1, this
assumes 26-connectivity in 3D and for 𝛿 = 2 a 98-connectivity.

Note that pyradiomics by default computes symmetrical GLCM!

As a two dimensional example, let the following matrix I represent a 5x5 image, having 5 discrete grey levels:

I =

⎡⎢⎢⎢⎢⎣
1 2 5 2 3
3 2 1 3 1
1 3 5 5 2
1 1 1 1 2
1 2 4 3 5

⎤⎥⎥⎥⎥⎦
For distance 𝛿 = 1 (considering pixels with a distance of 1 pixel from each other) in directions 𝛼 = 0∘ and
opposite 𝛼 = 180∘ (i.e., to the left and right from the pixel with the given value), the following symmetrical
GLCM is obtained:

P =

⎡⎢⎢⎢⎢⎣
6 4 3 0 0
4 0 2 1 3
3 2 0 1 2
0 1 1 0 0
0 3 2 0 2

⎤⎥⎥⎥⎥⎦
24 Chapter 6. Installation

https://en.wikipedia.org/wiki/Kurtosis

pyradiomics Documentation, Release 0.0.1

Let:

P(𝑖, 𝑗) be the co-occurence matrix for an arbitrary 𝛿 and 𝛼

𝑝(𝑖, 𝑗) be the normalized co-occurence matrix and equal to P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

𝑁𝑔 be the number of discrete intensity levels in the image

𝑝𝑥(𝑖) =
∑︀𝑁𝑔

𝑗=1 𝑃 (𝑖, 𝑗) be the marginal row probabilities

𝑝𝑦(𝑗) =
∑︀𝑁𝑔

𝑖=1 𝑃 (𝑖, 𝑗) be the marginal column probabilities

𝜇𝑥 be the mean gray level intensity of 𝑝𝑥 and defined as 𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

𝜇𝑦 be the mean gray level intensity of 𝑝𝑦 and defined as 𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗

𝜎𝑥 be the standard deviation of 𝑝𝑥

𝜎𝑦 be the standard deviation of 𝑝𝑦

𝑝𝑥+𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where 𝑖 + 𝑗 = 𝑘, and 𝑘 = 2, 3, . . . , 2𝑁𝑔

𝑝𝑥−𝑦(𝑘) =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗), where |𝑖− 𝑗| = 𝑘, and 𝑘 = 0, 1, . . . , 𝑁𝑔 − 1

𝐻𝑋 = −
∑︀𝑁𝑔

𝑖=1 𝑝𝑥(𝑖) log2

(︀
𝑝𝑥(𝑖) + 𝜖

)︀
be the entropy of 𝑝𝑥

𝐻𝑌 = −
∑︀𝑁𝑔

𝑗=1 𝑝𝑦(𝑗) log2

(︀
𝑝𝑦(𝑗) + 𝜖

)︀
be the entropy of 𝑝𝑦

𝐻𝑋𝑌 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
be the entropy of 𝑝(𝑖, 𝑗)

𝐻𝑋𝑌 1 = −
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝(𝑖, 𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀
𝐻𝑋𝑌 2 = −

∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔

𝑗=1 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log2

(︀
𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖

)︀
By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of
these values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W
and then summed and normalised. Features are then calculated on the resultant matrix. Weighting factor W is
calculated for the distance between neighbouring voxels by:

𝑊 = 𝑒−‖𝑑‖2

, where d is the distance for the associated angle according to the norm specified in setting ‘weight-
ingNorm’.

The following class specific settings are possible:

•symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two direc-
tions per angle, which results in a symmetrical matrix, with equal distributions for 𝑖 and 𝑗.

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:

–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and GLCMs are all weighted by factor 1 and summed.

6.3. radiomics package 25

pyradiomics Documentation, Release 0.0.1

References

•Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification; IEEE Transactions on
Systems, Man and Cybernetics; 1973(3), p610-621

•https://en.wikipedia.org/wiki/Co-occurrence_matrix

•http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm

getAutocorrelationFeatureValue()
Using the i and j arrays, calculate and return the mean Autocorrelation.

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖𝑗

Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.

getAverageIntensityFeatureValue()
Return the mean gray level intensity of the 𝑖 distribution.

𝜇𝑥 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

N.B. As this formula represents the average of the distribution of 𝑖, it is independent from the distribution
of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where both distrubutions are equal.

getClusterProminenceFeatureValue()
Using coefficients i, j, ux, uy, calculate and return the mean Cluster Prominence.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀4
𝑝(𝑖, 𝑗)

Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies
more asymmetry about the mean while a lower value indicates a peak near the mean value and less variation
about the mean.

getClusterShadeFeatureValue()
Using coefficients i, j, ux, uy, calculate and return the mean Cluster Shade.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀3
𝑝(𝑖, 𝑗)

Cluster Shade is a measure of the skewness and uniformity of the GLCM. A higher cluster shade implies
greater asymmetry about the mean.

getClusterTendencyFeatureValue()
Using coefficients i, j, ux, uy, calculate and return the mean Cluster Tendency.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑖 + 𝑗 − 𝜇𝑥(𝑖) − 𝜇𝑦(𝑗)

)︀2
𝑝(𝑖, 𝑗)

Cluster Tendency is a measure of groupings of voxels with similar gray-level values.

getContrastFeatureValue()
Using coefficients i, j, calculate and return the mean Contrast.

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝑗)2𝑝(𝑖, 𝑗)

26 Chapter 6. Installation

https://en.wikipedia.org/wiki/Co-occurrence_matrix
http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm

pyradiomics Documentation, Release 0.0.1

Contrast is a measure of the local intensity variation, favoring 𝑃 (𝑖, 𝑗) values away from the diagonal
(𝑖 = 𝑗). A larger value correlates with a greater disparity in intensity values among neighboring voxels.

getCorrelationFeatureValue()
Using coefficients i, j, ux, uy, sigx, sigy, calculate and return the mean Correlation.

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑔
𝑗=1 𝑝(𝑖,𝑗)𝑖𝑗−𝜇𝑥(𝑖)𝜇𝑦(𝑗)

𝜎𝑥(𝑖)𝜎𝑦(𝑗)

Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear dependency
of gray level values to their respective voxels in the GLCM.

getDifferenceAverageFeatureValue()
Using coefficients pxMiny, kValuesDiff, calculate and return the mean Difference Average.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑁𝑔−1∑︁
𝑘=0

𝑘P𝑥−𝑦(𝑘)

Difference Average measures the relationship between occurrences of pairs with similar intensity values
and occurrences of pairs with differing intensity values.

getDifferenceEntropyFeatureValue()
Using coefficients pxSuby, eps, calculate and return the mean Difference Entropy.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑁𝑔−1∑︁
𝑘=0

𝑝𝑥−𝑦(𝑘) log2

(︀
𝑝𝑥−𝑦(𝑘)

)︀
Difference Entropy is a measure of the randomness/variability in neighborhood intensity value differences.

getDifferenceVarianceFeatureValue()
Using coefficients pxSuby, kValuesDiff, DifferenceAverage calculate and return the mean Difference Vari-
ance.

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝑁𝑔−1∑︁
𝑘=0

(1 −𝐷𝐴)2P𝑥−𝑦(𝑘)

Difference Variance is a measure of heterogeneity that places higher weights on differing intensity level
pairs that deviate more from the mean.

getDissimilarityFeatureValue()
Using coefficients i, j, calculate and return the mean Dissimilarity.

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

|𝑖− 𝑗|𝑝(𝑖, 𝑗)

Dissimilarity is a measure of local intensity variation. A larger value correlates with a greater disparity in
intensity values among neighboring voxels.

getEnergyFeatureValue()
Using P_glcm, calculate and return the mean Energy.

𝑒𝑛𝑒𝑟𝑔𝑦 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(︀
𝑝(𝑖, 𝑗)

)︀2
Energy (or Angular Second Moment)is a measure of homogeneous patterns in the image. A greater Energy
implies that there are more instances of intensity value pairs in the image that neighbor each other at higher
frequencies.

getEntropyFeatureValue()
Using coefficients eps, calculate and return the mean Entropy.

6.3. radiomics package 27

pyradiomics Documentation, Release 0.0.1

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2

(︀
𝑝(𝑖, 𝑗) + 𝜖

)︀
Entropy is a measure of the randomness/variability in neighborhood intensity values.

getHomogeneity1FeatureValue()
Using coefficients i, j, calculate and return the mean Homogeneity 1.

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 1 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|

Homogeneity 1 is a measure of the similarity in intensity values for neighboring voxels. It is a measure of
local homogeneity that increases with less contrast in the window.

getHomogeneity2FeatureValue()
Using coefficients i, j, calculate and return the mean Homogeneity 2.

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 2 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

Homogeneity 2 is a measure of the similarity in intensity values for neighboring voxels.

getImc1FeatureValue()
Using coefficients HX, HY, HXY, HXY1, calculate and return the mean Informal Measure of Correlation
1.

𝐼𝑀𝐶 1 = 𝐻𝑋𝑌−𝐻𝑋𝑌 1
max{𝐻𝑋,𝐻𝑌 }

getImc2FeatureValue()
Using coefficients HXY, HXY2, calculate and return the mean Informal Measure of Correlation 2.

𝐼𝑀𝐶 2 =
√

1 − 𝑒−2(𝐻𝑋𝑌 2−𝐻𝑋𝑌)

getIdmFeatureValue()
Using coefficients i, j, calculate and return the mean Inverse Difference Moment.

𝐼𝐷𝑀 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

P(𝑖, 𝑗)

1 + |𝑖− 𝑗|2

IDM (inverse difference moment) is a measure of the local homogeneity of an image. IDM weights are
the inverse of the Contrast weights (decreasing exponentially from the diagonal i=j in the GLCM).

getIdmnFeatureValue()
Using coefficients i, j, Ng, calculate and return the mean Inverse Difference Moment Normalized.

𝐼𝐷𝑀𝑁 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|2
𝑁2

𝑔

)︁
IDMN (inverse difference moment normalized) is a measure of the local homogeneity of an image. IDMN
weights are the inverse of the Contrast weights (decreasing exponentially from the diagonal 𝑖 = 𝑗 in
the GLCM). Unlike Homogeneity2, IDMN normalizes the square of the difference between neighboring
intensity values by dividing over the square of the total number of discrete intensity values.

getIdFeatureValue()
Using coefficients i, j, Ng, calculate and return the mean Inverse Difference.

𝐼𝐷 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

P(𝑖, 𝑗)

1 + |𝑖− 𝑗|

28 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

ID (inverse difference) is another measure of the local homogeneity of an image. With more uniform gray
levels, the denominator will remain low, resulting in a higher overall value.

getIdnFeatureValue()
Using coefficients i, j, Ng, calculate and return the mean Inverse Difference Normalized.

𝐼𝐷𝑁 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

1 +
(︁

|𝑖−𝑗|
𝑁𝑔

)︁
IDN (inverse difference normalized) is another measure of the local homogeneity of an image. Unlike
Homogeneity1, IDN normalizes the difference between the neighboring intensity values by dividing over
the total number of discrete intensity values.

getInverseVarianceFeatureValue()
Using the i, j coeffients, calculate and return the mean Inverse Variance.

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

𝑝(𝑖, 𝑗)

|𝑖− 𝑗|2
, 𝑖 ̸= 𝑗

getMaximumProbabilityFeatureValue()
Using P_glcm, calculate and return the mean Maximum Probability.

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max
(︀
𝑝(𝑖, 𝑗)

)︀
Maximum Probability is occurrences of the most predominant pair of neighboring intensity values.

getSumAverageFeatureValue()
Using coefficients pxAddy, kValuesSum, calculate and return the mean Sum Average.

𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘)𝑘

Sum Average measures the relationship between occurrences of pairs with lower intensity values and
occurrences of pairs with higher intensity values.

getSumEntropyFeatureValue()
Using coefficients pxAddy, eps, calculate and return the mean Sum Entropy.

𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

2𝑁𝑔∑︁
𝑘=2

𝑝𝑥+𝑦(𝑘) log2

(︀
𝑝𝑥+𝑦(𝑘) + 𝜖

)︀
Sum Entropy is a sum of neighborhood intensity value differences.

getSumVarianceFeatureValue()
Using coefficients pxAddy, kValuesSum, SumEntropy calculate and return the mean Sum Variance.

𝑠𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

2𝑁𝑔∑︁
𝑘=2

(𝑘 − 𝑆𝐸)2𝑝𝑥+𝑦(𝑘)

Sum Variance is a measure of heterogeneity that places higher weights on neighboring intensity level pairs
that deviate more from the mean.

getSumVariance2FeatureValue()
Using coefficients pxAddy, kValuesSum, SumAvarage calculate and return the mean Sum Variance.

𝑠𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 2 =

2𝑁𝑔∑︁
𝑘=2

(𝑘 − 𝑆𝐴)2𝑝𝑥+𝑦(𝑘)

Sum Variance is a measure of heterogeneity that places higher weights on neighboring intensity level pairs
that deviate more from the mean.

6.3. radiomics package 29

pyradiomics Documentation, Release 0.0.1

This formula differs from SumVariance in that instead of subtracting the SumEntropy from the intensity,
it subtracts the SumAvarage, which is the mean of intensities and not its entropy

getSumSquaresFeatureValue()
Using coefficients i and ux, calculate and return the mean Sum of Squares (also known as Variance).

𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝜇𝑥)2𝑝(𝑖, 𝑗)

Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs about the
mean intensity level in the GLCM.

N.B. This formula represents the variance of the distribution of 𝑖 and is independent from the distribution
of 𝑗. Therefore, only use this formula if the GLCM is symmetrical, where VAR(i) to be equal to VAR(j).

6.3.7 radiomics.glszm module

class radiomics.glszm.RadiomicsGLSZM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as
a the number of connected voxels that share the same gray level intensity. A voxel is considered connected
if the distance is 1 according to the infinity norm. This yields a 26-connected region in a 3D image, and an
8-connected region in a 2D image. In a gray level size zone matrix 𝑃 (𝑖, 𝑗) the (𝑖, 𝑗)th element describes the
number of times a gray level zone with gray level 𝑖 and size 𝑗 appears in image.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLSZM then becomes:

P =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

P(𝑖, 𝑗) be the size zone matrix

𝑝(𝑖, 𝑗) be the normalized size zone matrix, defined as 𝑝(𝑖, 𝑗) = P(𝑖,𝑗)∑︀
P(𝑖,𝑗)

𝑁𝑔 be the number of discreet intensity values in the image

𝑁𝑠 be the number of discreet zone sizes in the image

𝑁𝑝 be the number of voxels in the image

getSmallAreaEmphasisFeatureValue()
Calculate and return the Small Area Emphasis (SAE) value.

𝑆𝐴𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

A measure of the distribution of small size zones, with a greater value indicative of more smaller size zones
and more fine textures.

30 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

getLargeAreaEmphasisFeatureValue()
Calculate and return the Large Area Emphasis (LAE) value.

𝐿𝐴𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

A measure of the distribution of large area size zones, with a greater value indicative of more larger size
zones and more coarse textures.

getIntensityVariabilityFeatureValue()
Calculate and return the Intensity Variability (IV) value.

𝐼𝑉 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑠

𝑗=1 P(𝑖,𝑗))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the variability of gray-level intensity values in the image, with a lower value indicating more
homogeneity in intensity values.

getIntensityVariabilityNormalizedFeatureValue()
Calculate and return the Intensity Variability Normalized (IVN) value.

𝐼𝑉 𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑠

𝑗=1 P(𝑖,𝑗))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑑
𝑗=1 P(𝑖,𝑗)2

Measures the variability of gray-level intensity values in the image, with a lower value indicating a greater
similarity in intensity values. This is the normalized version of the IV formula.

getSizeZoneVariabilityFeatureValue()
Calculate and return the Size-Zone Variability (SZV) value.

𝑆𝑍𝑉 =

∑︀𝑁𝑠
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the variability of size zone volumes in the image, with a lower value indicating more homogene-
ity in size zone volumes.

getSizeZoneVariabilityNormalizedFeatureValue()
Calculate and return the Size-Zone Variability Normalized (SZVN) value.

𝑆𝑍𝑉 𝑁 =

∑︀𝑁𝑠
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑑
𝑗=1 P(𝑖,𝑗)2

Measures the variability of size zone volumes throughout the image, with a lower value indicating more
homogeneity among zone size volumes in the image. This is the normalized version of the SZVN formula.

getZonePercentageFeatureValue()
Calculate and return the Zone Percentage (ZP) value.

𝑍𝑃 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠

𝑗=1
P(𝑖,𝑗)
𝑁𝑝

Measures the homogeneity of the distribution of zone size volumes in an image among the observed gray-
levels.

getGrayLevelVarianceFeatureValue()
Calculate and return the Gray Level Variance (GLV) value.

𝐺𝐿𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑖− 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑖

Measures the variance in gray level intensities for the zones.

6.3. radiomics package 31

pyradiomics Documentation, Release 0.0.1

getZoneVarianceFeatureValue()
Calculate and return the Zone Variance (ZV) value.

𝑍𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗)𝑗

Measures the variance in zone size volumes for the zones.

getZoneEntropyFeatureValue()
Calculate and return the Zone Entropy (ZE) value.

𝑍𝐸 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑠∑︁
𝑗=1

𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗) + 𝜖)

getLowIntensityEmphasisFeatureValue()
Calculate and return the Low Intensity Emphasis (LIE) value.

𝐿𝐼𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the distribution of lower gray-level size zones, with a higher value indicating a greater proportion
of lower gray-level values and size zones in the image.

getHighIntensityEmphasisFeatureValue()
Calculate and return the High Intensity Emphasis (HIE) value.

𝐻𝐼𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the distribution of the higher gray-level values, with a higher value indicating a greater proportion
of higher gray-level values and size zones in the image.

getLowIntensitySmallAreaEmphasisFeatureValue()
Calculate and return the Low Intensity Small Area Emphases (LISAE) value.

𝐿𝐼𝑆𝐴𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of smaller size zones with lower gray-level
values.

getHighIntensitySmallAreaEmphasisFeatureValue()
Calculate and return the High Intensity Small Area Emphases (HISAE) value.

𝐻𝐼𝑆𝐴𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)𝑖2

𝑗2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of smaller size zones with higher gray-level
values.

getLowIntensityLargeAreaEmphasisFeatureValue()
Calculate and return the Low Intensity Large Area Emphases (LILAE) value.

𝐿𝐼𝐿𝐴𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1

P(𝑖,𝑗)𝑗2

𝑖2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of larger size zones with lower gray-level
values.

32 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

getHighIntensityLargeAreaEmphasisFeatureValue()
Calculate and return the High Intensity Large Area Emphases (HILAE) value.

𝐻𝐼𝐿𝐴𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑠
𝑗=1 P(𝑖,𝑗)

Measures the proportion in the image of the joint distribution of larger size zones with higher gray-level
values.

6.3.8 radiomics.glrlm module

class radiomics.glrlm.RadiomicsGLRLM(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs in an image. A gray level run is defined
as the length in number of pixels, of consecutive pixels that have the same gray level value. In a gray level run
length matrix P(𝑖, 𝑗|𝜃), the (𝑖, 𝑗)th element describes the number of times a gray level 𝑖 appears consecutively 𝑗
times in the direction specified by 𝜃.

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

I =

⎡⎢⎢⎢⎢⎣
5 2 5 4 4
3 3 3 1 3
2 1 1 1 3
4 2 2 2 3
3 5 3 3 2

⎤⎥⎥⎥⎥⎦
The GLRLM for 𝜃 = 0, where 0 degrees is the horizontal direction, then becomes:

P =

⎡⎢⎢⎢⎢⎣
1 0 1 0 0
3 0 1 0 0
4 1 1 0 0
1 1 0 0 0
3 0 0 0 0

⎤⎥⎥⎥⎥⎦
Let:

P(𝑖, 𝑗|𝜃) be the run length matrix for an arbitrary direction 𝜃

𝑝(𝑖, 𝑗|𝜃) be the normalized run length matrix, defined as 𝑝(𝑖, 𝑗|𝜃) = P(𝑖,𝑗|𝜃)∑︀
P(𝑖,𝑗|𝜃)

𝑁𝑔 be the number of discreet intensity values in the image

𝑁𝑟 be the number of discreet run lengths in the image

𝑁𝑝 be the number of voxels in the image

By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the mean
of these values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance between
neighbouring voxels and then summed and normalised. Features are then calculated on the resultant matrix. The
distance between neighbouring voxels is calculated for each angle using the norm specified in ‘weightingNorm’.

The following class specific settings are possible:

•weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:

–‘manhattan’: first order norm

–‘euclidean’: second order norm

–‘infinity’: infinity norm.

6.3. radiomics package 33

pyradiomics Documentation, Release 0.0.1

–‘no_weighting’: GLCMs are weighted by factor 1 and summed

–None: Applies no weighting, mean of values calculated on separate matrices is returned.

In case of other values, an warning is logged and GLCMs are all weighted by factor 1 and summed.

References

•Galloway MM. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Pro-
cessing 4:172-179.

•Tang X. 1998. Texture information in run-length matrices. IEEE Transactions on Image Processing
7(11):1602-1609.

getShortRunEmphasisFeatureValue()
Calculate and return the mean Short Run Emphasis (SRE) value for all GLRLMs.

𝑆𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

A measure of the distribution of short run lengths, with a greater value indicative of shorter run lengths
and more fine textural textures.

getLongRunEmphasisFeatureValue()
Calculate and return the mean Long Run Emphasis (LRE) value for all GLRLMs.

𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

A measure of the distribution of long run lengths, with a greater value indicative of longer run lengths and
more coarse structural textures.

getGrayLevelNonUniformityFeatureValue()
Calculate and return the mean Gray Level Non-Uniformity (GLN) value for all GLRLMs.

𝐺𝐿𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑟

𝑗=1 P(𝑖,𝑗|𝜃))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the similarity of gray-level intensity values in the image, where a lower GLN value correlates
with a greater similarity in intensity values.

getGrayLevelNonUniformityNormalizedFeatureValue()
Calculate and return the Gray Level Non-Uniformity Normalized (GLNN) value.

𝐺𝐿𝑁𝑁 =
∑︀𝑁𝑔

𝑖=1(
∑︀𝑁𝑟

𝑗=1 P(𝑖,𝑗|𝜃))
2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)2

Measures the similarity of gray-level intensity values in the image, where a lower GLNN value correlates
with a greater similarity in intensity values. This is the normalized version of the GLN formula.

getRunLengthNonUniformityFeatureValue()
Calculate and return the mean Run Length Non-Uniformity (RLN) value for all GLRLMs.

𝑅𝐿𝑁 =

∑︀𝑁𝑟
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗|𝜃)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the similarity of run lengths throughout the image, with a lower value indicating more homo-
geneity among run lengths in the image.

getRunLengthNonUniformityNormalizedFeatureValue()
Calculate and return the mean Run Length Non-Uniformity Normalized (RLNN) value for all GLRLMs.

𝑅𝐿𝑁𝑁 =

∑︀𝑁𝑟
𝑗=1

(︁∑︀𝑁𝑔
𝑖=1 P(𝑖,𝑗|𝜃)

)︁2

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

34 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

Measures the similarity of run lengths throughout the image, with a lower value indicating more homo-
geneity among run lengths in the image. This is the normalized version of the RLN formula.

getRunPercentageFeatureValue()
Calculate and return the mean Run Percentage (RP) value for all GLRLMs.

𝑅𝑃 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

P(𝑖, 𝑗|𝜃)

𝑁𝑝

Measures the homogeneity and distribution of runs of an image.

getGrayLevelVarianceFeatureValue()
Calculate and return the Gray Level Variance (GLV) value.

𝐺𝐿𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑖− 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑖

Measures the variance in gray level intensity for the runs.

getRunVarianceFeatureValue()
Calculate and return the Run Variance (RV) value.

𝑅𝑉 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2, where

𝜇 =

𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃)𝑗

Measures the variance in runs for the run lengths.

getRunEntropyFeatureValue()
1 Calculate and return the Run Entropy (RE) value.

𝑅𝐸 = −
𝑁𝑔∑︁
𝑖=1

𝑁𝑟∑︁
𝑗=1

𝑝(𝑖, 𝑗|𝜃) log2(𝑝(𝑖, 𝑗|𝜃) + 𝜖)

getLowGrayLevelRunEmphasisFeatureValue()
Calculate and return the mean Low Gray Level Run Emphasis (LGLRE) value for all GLRLMs.

𝐿𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the distribution of low gray-level values, with a higher value indicating a greater concentration
of low gray-level values in the image.

getHighGrayLevelRunEmphasisFeatureValue()
Calculate and return the mean High Gray Level Run Emphasis (HGLRE) value for all GLRLMs.

𝐻𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑖2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the distribution of the higher gray-level values, with a higher value indicating a greater concen-
tration of high gray-level values in the image.

getShortRunLowGrayLevelEmphasisFeatureValue()
Calculate and return the mean Short Run Low Gray Level Emphasis (SRLGLE) value for all GLRLMs.

6.3. radiomics package 35

pyradiomics Documentation, Release 0.0.1

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)
𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of shorter run lengths with lower gray-level values.

getShortRunHighGrayLevelEmphasisFeatureValue()
Calculate and return the mean Short Run High Gray Level Emphasis (SRHGLE) value for all GLRLMs.

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)𝑖2

𝑗2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of shorter run lengths with higher gray-level values.

getLongRunLowGrayLevelEmphasisFeatureValue()
Calculate and return the mean Long Run Low Gray Level Emphasis (LRLGLE) value for all GLRLMs.

𝐿𝑅𝐿𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1

P(𝑖,𝑗|𝜃)𝑗2

𝑖2∑︀𝑁𝑔
𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of long run lengths with lower gray-level values.

getLongRunHighGrayLevelEmphasisFeatureValue()
Calculate and return the mean Long Run High Gray Level Emphasis (LRHGLE) value for all GLRLMs.

𝐿𝑅𝐻𝐺𝐿𝑅𝐸 =
∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)𝑖2𝑗2∑︀𝑁𝑔

𝑖=1

∑︀𝑁𝑟
𝑗=1 P(𝑖,𝑗|𝜃)

Measures the joint distribution of long run lengths with higher gray-level values.

6.3.9 radiomics.shape module

class radiomics.shape.RadiomicsShape(inputImage, inputMask, **kwargs)
Bases: radiomics.base.RadiomicsFeaturesBase

In this group of features we included descriptors of the three-dimensional size and shape of the tumor region.
Let in the following definitions denote 𝑉 the volume and 𝐴 the surface area of the volume of interest.

getVolumeFeatureValue()
Calculate the volume of the tumor region in cubic millimeters.

getSurfaceAreaFeatureValue()
Calculate the surface area of the tumor region in square millimeters.

𝐴 =

𝑁∑︁
𝑖=1

1

2
|a𝑖b𝑖 × a𝑖c𝑖|

Where:

𝑁 is the number of triangles forming the surface of the volume

𝑎𝑖𝑏𝑖 and 𝑎𝑖𝑐𝑖 are the edges of the 𝑖th triangle formed by points 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖

getSurfaceVolumeRatioFeatureValue()
Calculate the surface area to volume ratio of the tumor region

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 = 𝐴
𝑉

getCompactness1FeatureValue()
Calculate the compactness (1) of the tumor region.

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 = 𝑉
√
𝜋𝐴

2
3

36 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

Compactness 1 is a measure of how compact the shape of the tumor is relative to a sphere (most compact).
It is a dimensionless measure, independent of scale and orientation. Compactness 1 is defined as the ratio
of volume to the

√
surface area3. This is a measure of the compactness of the shape of the image ROI

getCompactness2FeatureValue()
Calculate the Compactness (2) of the tumor region.

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 2 = 36𝜋 𝑉 2

𝐴3

Compactness 2 is a measure of how compact the shape of the tumor is relative to a sphere (most compact).
It is a dimensionless measure, independent of scale and orientation. This is a measure of the compactness
of the shape of the image ROI.

getMaximum3DDiameterFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels. Also known as Feret
Diameter.

getMaximum2DDiameterSliceFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the row-column plane.

getMaximum2DDiameterColumnFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the row-slice plane.

getMaximum2DDiameterRowFeatureValue()
Calculate the largest pairwise euclidean distance between tumor surface voxels in the column-slice plane.

getSphericalDisproportionFeatureValue()
Calculate the Spherical Disproportion of the tumor region.

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = 𝐴
4𝜋𝑅2

Where 𝑅 is the radius of a sphere with the same volume as the tumor.

Spherical Disproportion is the ratio of the surface area of the tumor region to the surface area of a sphere
with the same volume as the tumor region.

getSphericityFeatureValue()
Calculate the Sphericity of the tumor region.

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = 𝜋
1
3 (6𝑉)

2
3

𝐴

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. This is
another measure of the compactness of a tumor.

getElongationFeatureValue()

getFlatnessFeatureValue()

getRoundnessFeatureValue()

6.3.10 radiomics.imageoperations module

radiomics.imageoperations.getHistogram(binwidth, parameterValues)

radiomics.imageoperations.binImage(binwidth, parameterMatrix, parameterMatrixCoordi-
nates)

radiomics.imageoperations.generateAngles(size, maxDistance=1)
Generate all possible angles from distance 1 until maxDistance in 3D. E.g. for d = 1, 13 angles are generated
(representing the 26-connected region). For d = 2, 13 + 49 = 62 angles are generated (representing the 26
connected region for distance 1, and the 98 connected region for distance 2)

Impossible angles (where ‘neighbouring’ voxels will always be outside delineation) are deleted.

6.3. radiomics package 37

pyradiomics Documentation, Release 0.0.1

Parameters

• size – dimensions (z, x, y) of the bounding box of the tumor mask.

• maxDistance – [1] Maximum distance between center voxel and neighbour

Returns numpy array with shape (N, 3), where N is the number of unique angles

radiomics.imageoperations.cropToTumorMask(imageNode, maskNode, label=1, bounding-
Box=None)

Create a sitkImage of the segmented region of the image based on the input label.

Create a sitkImage of the labelled region of the image, cropped to have a cuboid shape equal to the ijk boundaries
of the label.

Returns both the cropped version of the image and the cropped version of the labelmap, as well as the computed
bounding box. The bounding box is returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z, U_z), where ‘L’
and ‘U’ are lower and upper bound, respectively, and ‘x’, ‘y’ and ‘z’ the three image dimensions.

This can be used in subsequent calls to this function for the same images. This improves computation time, as
it will reduce the number of calls to SimpleITK.LabelStatisticsImageFilter().

Parameters

• label – [1], value of the label, onto which the image and mask must be cropped.

• boundingBox – [None], during a subsequent call, the boundingBox of a previous call can
be passed here, removing the need to recompute it. During a first call to this function for a
image/mask with a certain label, this value must be None or omitted.

Returns Cropped image and mask (SimpleITK image instances) and the bounding box generated
by SimpleITK LabelStatisticsImageFilter.

radiomics.imageoperations.resampleImage(imageNode, maskNode, resampledPixelSpacing,
interpolator=3, label=1, padDistance=5)

Resamples image or label to the specified pixel spacing (The default interpolator is Bspline)

‘imageNode’ is a SimpleITK Object, and ‘resampledPixelSpacing’ is the output pixel spacing. Enumerator
references for interpolator: 0 - sitkNearestNeighbor 1 - sitkLinear 2 - sitkBSpline 3 - sitkGaussian

radiomics.imageoperations.applyLoG(inputImage, sigmaValue=0.5)

radiomics.imageoperations.applyThreshold(inputImage, lowerThreshold, upperThreshold, in-
sideValue=None, outsideValue=0)

radiomics.imageoperations.swt3(inputImage, wavelet=’coif1’, level=1, start_level=0)

radiomics.imageoperations.applySquare(inputImage)
Computes the square of the image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑥𝑓 = (𝑐𝑥𝑖)
2, where 𝑐 =

1√︀
max(𝑥𝑖)

Where 𝑥𝑖 and 𝑥𝑓 are the original and filtered intensity, respectively.

radiomics.imageoperations.applySquareRoot(inputImage)
Computes the square root of the absolute value of image intensities.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑥𝑓 =

{︂ √
𝑐𝑥𝑖 for 𝑥𝑖 ≥ 0

−
√
−𝑐𝑥𝑖 for 𝑥𝑖 < 0

, where 𝑐 = max(𝑥𝑖)

38 Chapter 6. Installation

pyradiomics Documentation, Release 0.0.1

Where 𝑥𝑖 and 𝑥𝑓 are the original and filtered intensity, respectively.

radiomics.imageoperations.applyLogarithm(inputImage)
Computes the logarithm of the absolute value of the original image + 1.

Resulting values are rescaled on the range of the initial original image and negative intensities are made negative
in resultant filtered image.

𝑥𝑓 =

{︂
𝑐 log (𝑥𝑖 + 1) for 𝑥𝑖 ≥ 0
−𝑐 log (−𝑥𝑖 + 1) for 𝑥𝑖 < 0

, where 𝑐 =
max(𝑥𝑖)

max(𝑥𝑓)

Where 𝑥𝑖 and 𝑥𝑓 are the original and filtered intensity, respectively.

radiomics.imageoperations.applyExponential(inputImage)
Computes the exponential of the original image.

Resulting values are rescaled on the range of the initial original image.

𝑥𝑓 = 𝑒𝑐𝑥𝑖 , where 𝑐 =
log(max(𝑥𝑖))

max(𝑥𝑖)

Where 𝑥𝑖 and 𝑥𝑓 are the original and filtered intensity, respectively.

6.3.11 Module contents

radiomics.debug(debug_on=True)
Set up logging system for the whole package. By default, module hierarchy is reflected in log, as child log-
gers are created by module This is achieved by the following line in base.py: self.logger = logging.
getLogger(self.__module__) To use same instance in each module, set self.logger=logging.
getLogger('radiomics').

At command line, turn on debugging for all pyradiomics functions with:

import radiomics

radiomics.debug()

Turn off debugging with:

radiomics.debug(False)

6.3. radiomics package 39

pyradiomics Documentation, Release 0.0.1

40 Chapter 6. Installation

CHAPTER 7

Pyradiomics Indices and Tables

• modindex

• genindex

• search

41

pyradiomics Documentation, Release 0.0.1

42 Chapter 7. Pyradiomics Indices and Tables

CHAPTER 8

License

This package is covered by the 3D Slicer License.

This work was supported in part by the US National Cancer Institute grant 5U24CA194354, QUANTITATIVE
RADIOMICS SYSTEM DECODING THE TUMOR PHENOTYPE.

43

pyradiomics Documentation, Release 0.0.1

44 Chapter 8. License

Python Module Index

r
radiomics, 39
radiomics.base, 15
radiomics.featureextractor, 15
radiomics.firstorder, 21
radiomics.generalinfo, 20
radiomics.glcm, 24
radiomics.glrlm, 33
radiomics.glszm, 30
radiomics.imageoperations, 37
radiomics.shape, 36

45

Index

A
addProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 16
applyExponential() (in module ra-

diomics.imageoperations), 39
applyLoG() (in module radiomics.imageoperations), 38
applyLogarithm() (in module ra-

diomics.imageoperations), 39
applySquare() (in module radiomics.imageoperations), 38
applySquareRoot() (in module ra-

diomics.imageoperations), 38
applyThreshold() (in module ra-

diomics.imageoperations), 38

B
binImage() (in module radiomics.imageoperations), 37

C
calculateFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
15

computeFeatures() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 19

cropToTumorMask() (in module ra-
diomics.imageoperations), 38

D
debug() (in module radiomics), 39
disableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
15

disableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

disableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 17

E
enableAllFeatures() (ra-

diomics.base.RadiomicsFeaturesBase method),
15

enableAllFeatures() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

enableAllInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 17

enableFeatureByName() (ra-
diomics.base.RadiomicsFeaturesBase method),
15

enableFeatureClassByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

enableFeaturesByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

enableInputImageByName() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 17

enableInputImages() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

execute() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 18

execute() (radiomics.generalinfo.GeneralInfo method),
20

G
GeneralInfo (class in radiomics.generalinfo), 20
generate_exponential() (ra-

diomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

generate_log() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 19

generate_logarithm() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor

46

pyradiomics Documentation, Release 0.0.1

method), 20
generate_original() (ra-

diomics.featureextractor.RadiomicsFeaturesExtractor
method), 19

generate_square() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

generate_squareroot() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

generate_wavelet() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 19

generateAngles() (in module radiomics.imageoperations),
37

get10PercentileFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

get90PercentileFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getAutocorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getAverageIntensityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getBoundingBoxValue() (ra-
diomics.generalinfo.GeneralInfo method),
20

getClusterProminenceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getClusterShadeFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getClusterTendencyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getCompactness1FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
36

getCompactness2FeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getContrastFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
26

getCorrelationFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getDifferenceAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getDifferenceEntropyFeatureValue() (ra-

diomics.glcm.RadiomicsGLCM method),
27

getDifferenceVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getDissimilarityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getElongationFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getEnergyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getEnergyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getEntropyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
27

getFeatureClasses() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
class method), 20

getFeatureClassNames() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

getFeatureNames() (ra-
diomics.base.RadiomicsFeaturesBase class
method), 15

getFeatureNames() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

getFlatnessFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getGeneralSettingsValue() (ra-
diomics.generalinfo.GeneralInfo method),
21

getGrayLevelNonUniformityFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getGrayLevelNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
34

getGrayLevelVarianceFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getGrayLevelVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getHighGrayLevelRunEmphasisFeatureValue() (ra-

Index 47

pyradiomics Documentation, Release 0.0.1

diomics.glrlm.RadiomicsGLRLM method),
35

getHighIntensityEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getHighIntensityLargeAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method), 32

getHighIntensitySmallAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method), 32

getHistogram() (in module radiomics.imageoperations),
37

getHomogeneity1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getHomogeneity2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getIdFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 28

getIdmFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 28

getIdmnFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getIdnFeatureValue() (radiomics.glcm.RadiomicsGLCM
method), 29

getImageHashValue() (ra-
diomics.generalinfo.GeneralInfo method),
21

getImageSpacingValue() (ra-
diomics.generalinfo.GeneralInfo method),
21

getImc1FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getImc2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
28

getInputImagesValue() (ra-
diomics.generalinfo.GeneralInfo method),
21

getInputImageTypes() (ra-
diomics.featureextractor.RadiomicsFeaturesExtractor
method), 20

getIntensityVariabilityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getIntensityVariabilityNormalizedFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getInterquartileRangeFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getInverseVarianceFeatureValue() (ra-

diomics.glcm.RadiomicsGLCM method),
29

getKurtosisFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 23

getLargeAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
30

getLongRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getLongRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getLongRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getLowGrayLevelRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getLowIntensityEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getLowIntensityLargeAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getLowIntensitySmallAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getMaskHashValue() (radiomics.generalinfo.GeneralInfo
method), 21

getMaximum2DDiameterColumnFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getMaximum2DDiameterRowFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getMaximum2DDiameterSliceFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getMaximum3DDiameterFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getMaximumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getMaximumProbabilityFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getMeanAbsoluteDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 23

getMeanFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getMedianFeatureValue() (ra-

48 Index

pyradiomics Documentation, Release 0.0.1

diomics.firstorder.RadiomicsFirstOrder
method), 22

getMinimumFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getProvenance() (radiomics.featureextractor.RadiomicsFeaturesExtractor
method), 19

getRangeFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getRobustMeanAbsoluteDeviationFeatureValue()
(radiomics.firstorder.RadiomicsFirstOrder
method), 23

getRootMeanSquaredFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 23

getRoundnessFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getRunEntropyFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getRunLengthNonUniformityFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getRunLengthNonUniformityNormalizedFeatureValue()
(radiomics.glrlm.RadiomicsGLRLM method),
34

getRunPercentageFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getRunVarianceFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
35

getShortRunEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method),
34

getShortRunHighGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 36

getShortRunLowGrayLevelEmphasisFeatureValue() (ra-
diomics.glrlm.RadiomicsGLRLM method), 35

getSizeZoneVariabilityFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getSizeZoneVariabilityNormalizedFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

getSkewnessFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 23

getSmallAreaEmphasisFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
30

getSphericalDisproportionFeatureValue() (ra-

diomics.shape.RadiomicsShape method),
37

getSphericityFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
37

getStandardDeviationFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 23

getSumAverageFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumEntropyFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumSquaresFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
30

getSumVariance2FeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSumVarianceFeatureValue() (ra-
diomics.glcm.RadiomicsGLCM method),
29

getSurfaceAreaFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
36

getSurfaceVolumeRatioFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
36

getTotalEnergyFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 22

getUniformityFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getVarianceFeatureValue() (ra-
diomics.firstorder.RadiomicsFirstOrder
method), 24

getVersionValue() (radiomics.generalinfo.GeneralInfo
method), 21

getVolumeFeatureValue() (ra-
diomics.shape.RadiomicsShape method),
36

getVolumeNumValue() (ra-
diomics.generalinfo.GeneralInfo method),
21

getVoxelNumValue() (radiomics.generalinfo.GeneralInfo
method), 21

getZoneEntropyFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
32

getZonePercentageFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

Index 49

pyradiomics Documentation, Release 0.0.1

getZoneVarianceFeatureValue() (ra-
diomics.glszm.RadiomicsGLSZM method),
31

L
loadImage() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 18
loadParams() (radiomics.featureextractor.RadiomicsFeaturesExtractor

method), 16

R
radiomics (module), 39
radiomics.base (module), 15
radiomics.featureextractor (module), 15
radiomics.firstorder (module), 21
radiomics.generalinfo (module), 20
radiomics.glcm (module), 24
radiomics.glrlm (module), 33
radiomics.glszm (module), 30
radiomics.imageoperations (module), 37
radiomics.shape (module), 36
RadiomicsFeaturesBase (class in radiomics.base), 15
RadiomicsFeaturesExtractor (class in ra-

diomics.featureextractor), 15
RadiomicsFirstOrder (class in radiomics.firstorder), 21
RadiomicsGLCM (class in radiomics.glcm), 24
RadiomicsGLRLM (class in radiomics.glrlm), 33
RadiomicsGLSZM (class in radiomics.glszm), 30
RadiomicsShape (class in radiomics.shape), 36
resampleImage() (in module radiomics.imageoperations),

38

S
swt3() (in module radiomics.imageoperations), 38

50 Index

	Feature Classes
	Filter Classes
	Supporting reproducible extraction
	Citation
	3rd-party packages used in pyradiomics
	Installation
	Installation
	Usage
	radiomics package

	Pyradiomics Indices and Tables
	License
	Python Module Index

